рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Хлорофиллы

Хлорофиллы - Лекция, раздел Биология, Лекции по физиологии растений В Настоящее Время Известно Несколько Различных Форм Хлорофилла, Которые Обозн...

В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русским ученым М.С. Цветом (1906) с помощью разработанного им метода хро­матографии. Структурная формула хлорофилла, предложенная Г. Фишером (1939), получила окончательное подтверждение в 1960 г. в результате двух независимо проведенных работ в США и ФРГ по искусственному синтезу хлорофилла а.

Хлорофилл — сложный эфир дикарбоновой кислоты хлорофиллина, у которой одна карбоксильная группа этерифицирована остатком метилового спирта‚ а другая – остатком непредельного спирта фитола:

 

 

На рисунке 8, дана структурная формула хлорофилла а. Четыре пиррольных кольца (I—IV) соединены между собой ме­тановыми мостиками (α‚β‚ γ‚ ε), образуя порфириновое ядро. Атомы азота пиррольных колец четырьмя координационными связями взаимодействуют с атомом Mg. В структуре порфиринового ядра есть также циклопентановое кольцо, содержащее хи­мически активную карбонильную группу. Структура, состоящая из тетрапиррольного и циклопентанового колец, получила назва­ние форбина.

Порфириновое кольцо представляет собой систему из девяти пар чередующихся двойных и одинарных, т. е. конъюгированных, связей с 18 делокализованными π-электронами. Хлорофилл b отличается от хлорофилла а тем, что у третьего углерода второ­го пиррольного кольца вместо метильной находится альдегидная группа. Структура хлорофилла, лишенная фитола, называется хлорофиллидом. При замещении атома магния протонами водоро­да образуется феофитин.

Согласно закону Гротгуса — одному из фундаментальных законов светохимии фотохимически деятельны только поглощенные лучи. Поэтому изучение спектров поглоще­ния пигментов, и в первую очередь хлорофилла, является реша­ющим для понимания механизма фотосинтеза и разработки путей его регуляции. Не случайно этой ключевой проблеме по­священ классический труд К.А. Тимирязева «Об усвоении света растениями».

Отличительной особенностью всех пигментов является нали­чие в их составе системы слабо удерживаемых делокализованных электронов, возбуждаемых квантами видимой части солнечного спектра. Это лежит в основе их свойства — избирательного по­глощения света. Резко выраженные максимумы поглощения хлорофиллов находятся в сине-фиолетовой и красной частях спект­ра (рис. 9). Максимумы поглощения раствора хлорофилла а в этиловом спирте — 428—430 и 660—663 нм соответственно, хло­рофилла b — 452—455 и 642—644 нм. Хлорофиллы очень слабо поглощают оранжевые и желтые лучи и совсем не поглощают зеленые и инфракрасные. Поэтому раствор хлорофилла а имеет сине-зеленый цвет, хлорофилла b — желто-зеленый.

Поглощение в сине-фиолетовой части спектра обусловлено системой конъюгированных 9 пар одинарных и двойных связей порфиринового ядра молекулы хлорофилла с 18 делокализованными π-электронами, которые возбуждаются квантами с энергией 4,5 .10-19 Дж, соответствующей этим лучам. Поглощение в крас­ной области спектра (энергия кванта 3 .10-19 Дж) связано с гидри­рованием двойной связи у C7—C8 в IV пиррольном кольце (при восстановлении протохлорофиллида до хлорофиллида), присутст­вием магния в порфириновом ядре и наличием циклопентанового кольца (V). Эти же особенности структуры способствуют сниже­нию поглощения в желтой и зеленой частях спектра.

 

 


Рис. 8. Структурная формула хлорофилла

Рис. 9. Спектры поглощения пигментов хлоропластов

Даже небольшое изменение в строении молекул приводит к значительным различиям в по­ложении максимумов поглощения. Так, у хлорофилла b, отли­чающегося от хлорофилла а заменой метильной группы на альдегидную, максимумы поглощения света оказываются более сближенными за счет смещения сине-фиолетового в длинно­волновую, а красного — в коротковолновую области. Кроме того, хлорофилл b более полно использует сине-фиолетовый свет, чем хлорофилл а; в красных лучах преимущества имеет хлорофилл а. Замещение магния протонами при обработке хло­рофилла кислотой приводит к образованию феофитина, имею­щего ослабленный красный максимум поглощения света и буро-зеленый цвет. Удаление остатков фитола и метилового спирта путем щелочного гидролиза слабо сказывается на оп­тических свойствах хлорофилла.

Существенное влияние на положение максимумов спектра поглощения оказывают природа растворителя и взаимодействие молекул хлорофилла друг с другом, а также с другими пигмента­ми, белками и липидами в составе хлоропластов. У агрегирован­ных молекул хлорофилла, взаимодействующих с белками, крас­ный максимум поглощения сдвинут в более длинноволновую часть спектра. Степень связывания определяет точный максимум поглощения света.

Раствор хлорофилла обладает яркой вишнево-красной флуоре­сценцией — излучением поглощенных квантов света. В соответст­вии с правилом Стокса флуоресценция сдвинута в более длинно­волновую часть по сравнению с поглощением света, максимум флуоресценции 650—668 нм. Хлорофилл в живом листе флуорес­цирует слабо. Это связано с тем, что энергия поглощенных квантов в основном преобразуется в химическую, причем по степени флуоресценции листа можно судить об эффективности фотосинтеза. Чем интенсивнее флуоресценция, тем ниже КПД использования поглощенной энергии.

Механизмы избирательного поглощения света и флуоресцен­ции изучены достаточно хорошо. Поглощение кванта света со­провождается переходом в более богатое энергией короткоживущее возбужденное состояние, связанное с переходом электрона на более удаленную от ядра орбиталь. Электронные орбитали атомов характеризуются определенными энергетическими уровнями, возрастающими по мере удаления от ядра. Те кванты света, энергия которых соответству­ет разности энергий между двумя орбиталями, поглощаются с переходом электрона на более дальнюю орбиталь. Поэтому могут поглощаться только кванты света с совершенно определенной длиной волны. В отличие от атома возможные энергетические состояния молекул нельзя описать точно фиксированными энер­гетическими уровнями, они характеризуются широкими полоса­ми в спектрах поглощения (рис. 10).

 

Рис. 10. Энергетические состояния молекулы хлорофилла и различные пути ис­пользования энергии электронного возбуждения. (Цифры указывают время жизни каждого из состояний молекулы.)

В органических молекулах почти все электроны спарены, т. е. находятся в одном и том же энергетическом состоянии, обладая противоположными спинами (основное синглетное энергетичес­кое состояние — S0). Поглощение молекулой хлорофилла кванта красного света с энергией 170 кДж/моль квантов приводит к пер­вому синглетному электронно-возбужденному состоянию — S1 время существования которого примерно 10-9 с. Возбужденная молекула хлорофилла переходит в стабильное состояние путем возвращения электрона на исходную орбиталь. Поглощенная энергия при этом может расходоваться различными способами: рассеиванием теплоты; потерей в виде излучения; возбуждением соседних молекул пигментов (перенос энергии к фотохимическим центрам); совершением фотохимической работы. Возможны также потеря части энергии в виде теплоты и переход молекулы из синглетного в метастабильное триплетное возбужденное состоя­ние (с обращением спина электрона). Триплетное состояние длится гораздо дольше (> 10-4 с). Из триплетного состояния мо­лекула может вернуться в основное за счет более длительного, чем флуоресценция, слабого длинноволнового свечения — фосфоре­сценции или направив энергию на фотохимические реакции.

Поглощение кванта в сине-фиолетовой области спектра (со­держание энергии 300 кДж/моль квантов) приводит к возникно­вению исключительно краткого (< 10-12 с) второго возбужден­ного синглетного состояния (S2). За счет выделения части энер­гии в виде теплоты молекула переходит в S1, и дальнейшие события соответствуют возбуждению красным светом. Поэтому поглощение света в синей и красной областях дает одинаковый спектр флуоресценции (красный), а также равные количества фотохимической работы, несмотря на неодинаковое содержание энергии у поглощенных квантов. Этим объясняется более высо­кая эффективность красных участков солнечного спектра, о ко­торой писал еще К.А. Тимирязев. Он предположил, что хлорофилл способен к окислительно-восстановительному превращению. Впервые реакция фотовосста­новления хлорофилла была осуществлена в 1948 г. А.А. Красновским в модельных опытах. В качестве донора электронов использована аскорбиновая кислота.

Таким образом, молекула хлорофилла благодаря структурным изменениям и физико-химическим особенностям способна вы­полнять три важнейшие функции: избирательно поглощать энер­гию света; трансформировать ее в энергию электронного возбуж­дения (или запасать ее в виде энергии электронного возбужде­ния); фотохимически преобразовать энергию возбужденного состояния в химическую энергию. Для функционирования моле­кулы хлорофилла существенное значение имеет ее пространст­венная организация. Магний-порфириновое кольцо молекулы представляет собой почти плоскую пластинку толщиной 0,42 нм и площадью 1 нм2. Это гидрофильная фотоактивная часть моле­кулы хлорофилла. Длинный (2 нм) алифатический остаток фитола, образующий угол с порфириновым кольцом, — ее гидрофоб­ный полюс, необходимый для взаимодействия молекулы хлоро­филла с гидрофобными участками мембранных белков и липидов.

 

– Конец работы –

Эта тема принадлежит разделу:

Лекции по физиологии растений

Московский государственный областной университет.. д а климачев.. лекции по физиологии растений Москва климачев д а..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Хлорофиллы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства.   Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.  

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир—основа жизни на нашей планете. Растение обладает уникальным свойством—способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты — высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины — это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль — полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Органы, ткани и функциональные системы высших растений
    Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и и

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ — наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission — отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва — растение — а

Поглощение и передвижение воды
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения — орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам — хлоропластам. Хлоропласты высших

Каротиноиды
Каротиноиды — жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы — пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ . Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание — это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Паразиты
На примере подъельника и орхидей был рассмотрен способ питания высших растений путем паразитизма. Микоризный гриб также выступает как паразит (явление взаимного парази­тизма). Гифы гриба образуют в

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз — это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков — переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Элементы‚ необходимые для растительного организма
Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значитель

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта — массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды — сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) — это период от полного прекращения плодоношения до естественной смерти растения. Старение — это период закономерного ослабления процессов жизнедеятельности, из

Осенняя окраска листьев и листопад
Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов. Листья грабов, кленов и берез становятся светло-желтыми, д

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений — это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Другие виды тропизмов
Хемотропизм — это изгибы корней при неравномерном распределении в почве какого-нибудь химического вещества. Хемотропизм кроме корней свойственен и пыльцевым трубкам, проросткам растений-паразитов.

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость — способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки — не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха — это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) — способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов.   vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens — фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла — о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, — наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4—1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги