Элементарный состав растений

Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2-, NH4+.

Фосфор.Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему растений в виде окисленных соединений, глав­ным образом кислотных остатков (Н2Р04-, НРО42-, Р043-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких как нуклеиновые кислоты (ДНК и РНК), нуклеотиды, фосфолипиды, витамины и многие другие, играющие центральную роль в обмене веществ. Многие фосфорсодержащие ви­тамины и их производные являются коферментами и принимают непосредственное уча­стие в каталитическом акте, ускоряющем течение важнейших процессов обмена (фото­синтез, дыхание и др.). При всех превращениях в растительном организме фосфор со­храняет степень окисленности. Собственно, все превращения сводятся лишь к присоеди­нению или переносу остатка фосфорной кислоты (фосфорилирование и трансфосфори-лирование). Фосфорилирование — это присоединение остатка фосфорной кислоты к ка­кому-либо органическому соединению с образованием эфирной связи, например взаи­модействие фосфорной кислоты с карбонильной, карбоксильной или спиртовой группи­ровками. Трансфосфорилирование — это процесс, при котором остаток фосфорной ки­слоты, включенный в состав одного органического вещества, переносится на другое ор­ганическое вещество. Ряд важнейших в биологическом отношении фосфорных соедине­ний содержит несколько остатков фосфорной кислоты. Для фосфора характерна способ­ность к образованию связей с высоким энергетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энер­гию на самые различные биохимические и физиологические процессы. Важным соеди­нением, содержащим макроэргические фосфорные связи, является АТФ. Фосфорная ки­слота, поступая в живые клетки корня, быстро включается в состав нуклеотидов, образуя АМФ и АДФ.

Серасодержится в растениях в количестве 0,17%. Однако в растениях семейства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфат-иона SO42-. Сера входит в состав органических соединений, играющих важную роль в обмене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки содержат серосодержащие аминокислоты. Сера входит также в состав многих витаминов и многих коферментов, таких, как биотин, тиа­мин, коэнзим А, глютатион, липоевая кислота и др. В связи с этим сера принимает участие в многочисленных реакциях обмена (аэробная фаза дыхания, синтез жиров и др.). Сульфгидрильные группировки (SH) и дисульфидные связи (S—S) играют боль­шую роль, обеспечивая взаимодействие между ферментами и их простетическими груп­пами, а также участвуя в создании определенной конфигурации белковых молекул. Часто за счет дисульфидных связей сохраняется трехмерная структура белка, а следова­тельно, его активность. Сера входит в состав чесночных и горчичных масел. Именно с этим связан своеобразный вкус и запах ряда крестоцветных. Нельзя не отметить, что соединения серы, такие, как S-аденозилметионин, участвуют в обра­зовании полиаминов, в частности спермедина. Согласно современным представлениям, полиамины играют большую и разностороннюю роль в жизнедеятельности организмов. Они оказывают влияние на структуру нуклеиновых кислот и рибосом, регулируют про­цессы деления клеток. Полиамины благодаря наличию заряженных аминогрупп во мно­гих реакциях могут в известной мере заменять неорганические катионы. Сера, поступая в растение в виде иона SO42" , быстро переходит в органическую форму при участии АТФ и магния.

Кальцийвходит в состав растений в количестве 0,2%. В старых листьях его содержание доходит до 1 %. Поступает в виде иона Са2+. Роль кальция раз­нообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по пре­имуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется на клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са2+ непо­средственно соприкасались с клетками корня. Кальций повышает вязкость цитоплазмы, что видно на опытах с формами плазмолиза. В солях кальция плазмолиз имеет вогнутую форму, так как более вязкая цитоплазма с трудом отстает от клеточных оболочек. При­сутствие кальция важно для нормального функционирования мембран. Кальций прини­мает участие в поддержании структуры хромосом, являясь связующим звеном между ДНК и белком. При недостатке кальция наблюдаются повреждения хромосом и нарушение митотического цикла. Кальций необходим также для поддержания структуры митохондрий и рибосом. Большое значение имеет связывание Са2+ с белком кальмодулином. Этот процесс регулирует внутриклеточную концентрацию Са2+. Кальций являет­ся активатором таких ферментов, как фосфорилаза, аденозинтрифосфатаза. Комплекс Са2+ с белком активирует протеинкиназы, катализирующие процессы фосфорилирования белков. Кальций реагирует с различными органическими кислотами, давая соли, и тем самым является в определенной мере регулятором рН клеточного сока. Ней­трализуя щавелевую кислоту, образует характерные кристаллы щавелевокислого каль­ция.

Магний.Содержание магния в растениях составляет в среднем 0,17%. Магний поступает в растение в виде иона Mg2+. Магний входит в состав основно­го пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии магния. Отсюда синтез белка не идет при недостатке магния, а тем более в его отсутствие. Магний является активатором многих ферментов. Важной осо­бенностью магния является то, что он связывает фермент с субстратом по типу хелатной связи (клешневидная связь между органическим веществом и катионом). Так, на­пример, присоединяясь к пирофосфатной группе, магний связывает АТФ с соответст­вующими ферментами. В связи с этим все реакции, включающие перенос фосфатной группы (большинство реакций синтеза, а также многие реакции энергетического обме­на), требуют присутствия магния. Магний активирует такие ферменты, как ДНК- и РНК-полимеразы, аденозинтрифосфатазу, глютаматсинтетазу, а также ферменты, ката­лизирующие перенос карбоксильной группы, — реакция карбоксилирования и декарбок-силирования. В ряде случаев влияние магния на работу ферментов определя­ется тем, что он реагирует с продуктами реакции, сдвигая равновесие в сторону их обра­зования. Магний может также инактивировать ряд ингибиторов ферментативных реак­ций.

Калий.Содержание калия в растении в среднем составляет 0,9%. Он поступает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выяс­ненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холод­ной водой, остальные 30% в адсорбированном состоянии. В противоположность каль­цию калий снижает вязкость протоплазмы, повышает ее оводненность. Эта особенность действия калия хорошо проявляется в том, что в его солях плазмолиз имеет выпуклую форму, протоплазма легко отстает от клеточной оболочки. Следовательно, калий является антагонистом кальция. Калий активирует работу многих ферментных систем, например фермент, катализирующий фосфорилирование сахаров,— гексокиназу, фер­менты, катализирующие перенос фосфорной кислоты с пирувата на АДФ (пируваткиназа), ферменты цикла Кребса и синтеза белков. Недостаток калия замедляет транспорт са­харозы по флоэме. Влияние калия на передвижение органических веществ, по гипоте­зе Спаннера, проявляется благодаря образованию градиента электрического потенциала на ситовидных пластинках, который возникает при циркуляции калия между ситовидной трубкой и сопровождающими клетками.

Соли калия растворимы и участвуют в регуляции осмотического потенциала клетки. В частности, большое значение имеет К+ в регуляции работы устьиц.

Железовходит в состав растения в количестве 0,08%. Железо поступает в ра­стение в виде Fe3+. Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и об­ратно. Железо входит в состав каталитических центров многих окислительно-восстановительных ферментов. В виде геминовой группировки оно входит в состав цитохромов, цитохромоксидазы, каталазы и пероксидазы. Цитохромная система является необходимым компонентом дыхательной и фотосинтетической электронно-транспортной цепи. В силу этого при недостатке железа тормозятся оба этих важнейших процесса. Кроме того, целый ряд ферментов содержит железо в негеминовой форме. К таким ферментам относятся некоторые флавопротеиды, железосодержащий белок ферредоксин и др. Железо необходимо для образования хлорофилла. При этом железо катализирует образование предшественников хлорофилла аминолевулиновой кислоты и протопорфиринов. Предполагают, что железо играет роль в образовании белков хлоропластов. При недостатке железа нет условий для образования таких важнейших компо­нентов хлоропластов, как цитохромы, ферредоксин и некоторые другие. Возможно, это косвенно влияет на образование хлорофилла.

Марганецпоступает в растение в виде ионов Мn2+. Среднее содержание марганца в растениях 0,001%. Марганец активирует ферменты, катализирующие реакции цикла Кребса (дегидрогеназы яблочной кислоты, лимонной кислоты, декарбоксилазу щавелевоуксусной кислоты и др.). Марганец принимает участие в азотном обмене в процессе восстановления нитратов до аммиака. Этот процесс проходит через этапы, катализируе­мые рядом ферментов, некоторые из которых, например, зависимы от марганца. В связи с этим растения, испытывающие недостаток марганца, не могут использовать нитраты в качестве источника азотного питания. Марганец активирует ферменты, участ­вующие в окислении важнейшего фитогормона — ауксина.

Марганец характеризуется высоким значением окислительно-восстановительного по­тенциала. Он необходим для нормального протекания фотосинтеза на этапе разложения воды и выделения кислорода. Этот элемент играет специфическую роль в поддержании структуры хлоропластов. В отсутствие марганца хлорофилл быстро разрушается на све­ту.

Медьпоступает в растение в виде иона Сu2+ или Сu+. Она вхо­дит непосредственно в состав ряда ферментных систем, относящихся к группе оксидаз, таких, как полифенолоксидаза, аскорбатоксидаза, цитохромоксидаза. В этих ферментах медь соединена с белком, по-видимому, через SH-группы. Кроме того, медь активирует ряд ферментов, в частности нитритредуктазу, а также протеазы. Большая часть меди (75% от всего содержания меди в листьях) концентрируется в хлоропластах. В хлоропластах сосредоточен и медьсодержащий белок синего цвета — пластоцианин. Со­держание меди в пластоцианине составляет 0,57%. Медь, подобно железу и марганцу, обладает способностью к обратимому окислению и восстановлению. Именно поэтому пластоцианин занимает определенное место в цепи переноса электронов в световой фазе фотосинтеза.

Цинкпоступает в растение в виде ионов Zn2+. Он входит в состав ферментов — фосфатазы, карбоангидразы и др. Карбоангидраза катализирует разложе­ние гидрата окиси углерода на воду и углекислый газ. Эта реакция важна для процесса фотосинтеза. Углекислый газ, поступая в клетку, растворяется в воде, образуя Н2СО3.. Фермент карбоангидраза, катализируя высвобождение С02 из гидрата окиси углерода, способствует его использованию в процессе фотосинтеза. Кроме того, цинк активирует такие дыхательные ферменты, как енолаза, альдолаза, гексокиназа, триозофосфатдегидрогеназа.

Цинк играет важную роль при образовании фитогормона ауксина. Это связано с тем, что цинк, повышая активность триптофансинтетазы, влияет на образование амино­кислоты триптофана — предшественника ауксина. Внесение цинка повышает содержа­ние ауксинов и заметно сказывается на темпах роста растений.

Молибденпоступает в растение в виде аниона МоО42- При не­достатке молибдена происходят заметные изменения в азотном обмене растений — на­блюдается уменьшение синтеза белка при одновременном падении содержания амино­кислот и амидов. Нарушения в азотном обмене проявляются особенно на фоне питания растений нитратами. Это связано с тем, что молибден входит в активный центр фермента, восстанавливающего нитраты до нитритов,— нитратредуктазу. Нитратредуктаза — это флавопротеид, простетической группой которого является флавинадениндинуклеотид (ФАД). При восстановлении нитратов молибден действует как переносчик электронов от флавинадениндинуклеотида к нитрату, при этом NO3- пе­реходит в NO2-, а Мо5+ переходит в Мо6+.

Молибден вместе с железом входит в состав ферментного комплекса нитрогеназы в виде Mo-Fe-белок и участвует в фиксации азота атмосферы различными микроорга­низмами. По-видимому, он обладает и другими функциями, так как необходим растению и в условиях достаточного уровня аммиачного питания. При недостатке молибдена со­держание аскорбиновой кислоты резко падает. При отсутствии молибдена наблюдаются нарушения в фосфорном обмене растений.

Бор поступает в растение в виде аниона борной кислоты — ВO33-. Среднее содер­жание бора в растениях 0,0001%. Роль бора выяснена далеко не достаточно. Это связано с тем, что бор, в отличие от большинства других элементов, не входит в состав ни одно­го фермента.

Большое значение для осуществления функции бора имеет его способность давать комплексные соединения. Комплексы с борной кислотой образуют простые сахара, по­лисахариды, спирты, фенольные соединения и др. В этой связи можно предположить, что бор влияет на скорость ферментативных реакций, активируя или инактивируя не сами ферменты, а субстраты, на которые действуют ферменты. Комплексы ор­ганических соединений с борной кислотой могут иметь и иное значение. Так, способность бора образовывать комплексы с углеводами оказывает влияние на клеточную обо­лочку, регулируя ориентацию мицелл целлюлозы, что способствует ее большей эластичности. У растений, испытывающих недостаток бора, наблюдается быстрая потеря эластичности клеточных оболочек, что, в свою очередь, связано с более жесткой ориен­тацией мицелл целлюлозы.

В борнедостаточных растениях заторможен процесс аминирования органических кислот. Бор может выступать как ингибитор активности ряда ферментов, в первую оче­редь катализирующих образование токсичных фенольных соединений. При недостатке бора наблюдается накопление кофейной и хлорогеновой кислот, которые считаются ингибиторами роста растений. Бор усиливает рост пыльцевых трубок, прорастание пыльцы. В этой связи опрыскивание бором способствует оплодотворению.

Хлорпоступает в растение в виде СI-. Показана его необходимость при фотосин­тетическом окислении воды и переносе электронов на хлорофилл.

Кобальтвходит в состав витамина В12 и некоторых связанных с ним соединений. Витамин В12 не поступает извне, а синтезируется в растениях даже в стерильных услови­ях. Это говорит в пользу необходимости кобальта. Кобальт, наряду с молибденом, необ­ходим при фиксации азота атмосферы симбиотическими микроорганизмами. В связи с этим понятно, что сильнее нуждаются в кобальте бобовые растения. Установлена необ­ходимость кобальта для сине-зеленых водорослей.