Растительные пигменты

Пигменты — высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавиновые пигменты.

Металлопорфирины имеют порфириновое ядро, состоящее в свою очередь из че­тырех пиррольных колец. В центре порфиринового цикла расположен атом металла, со­единенный со всеми четырьмя атомами азота пиррольных колец. Металлопорфирин, в состав которого входит атом магния, образует основу молекулы зеленых растительных пигментов — хлорофиллов. Молекулы этого пигмента асимметричны и биполярны, так как гидрофильная часть образована четырьмя пиррольными кольцами, а гидро­фобная представлена остатком длинного многоатомного спирта фитола.

В растительном мире встречаются разнообразные представители хлорофиллов:

1. Хлорофилл а — наиболее распространенный зеленый пигмент высших растений и водорослей. Обладает самым низким уровнем возбуждения светом, в связи с чем мо­жет воспринимать энергию электронного возбуждения других вспомогательных пиг­ментов.

2. Хлорофилл b — дополнительный пигмент высших растений и многих водорослей.

3. Хлорофиллы с, d, e являются специфическими для определенных таксонов водорос­лей и играют роль дополнительных пигментов.

4. Бактериохлорофиллы — пигменты зеленых и пурпурных фототрофных бактерий, об­ладающих бактериальным фотосинтезом.

Производными порфиринов являются и фикобилиновые пигменты: фикоэритрин — хромопротеид красного цвета, содержащийся преимущественно в красных водорос­лях; фикоцианин — сложный белок синего цвета, характерный для сине-зеленых водо­рослей (цианобактерий).

Интересным пигментом является бактериородопсин — специфический белок-пигмент сиреневой окраски, выделенный из мембран галофильных бактерий (галобактерий), живущих в теплых с избыточной соленостью водоемах. При этом энергия света, поглощенная окрашенными мембранами, используется для активного перемещения протонов через мембрану, в результате чего создается разность электрохимических потен­циалов по обеим ее сторонам. Клетки этих галофильных бактерий успешно используют трансмембранный потенциал для синтеза АТФ и других физиологических функций, осуществляя бесхлорофильный фотосинтез.

К хромопротеидам относятся железопорфириновые ферменты — цитохромы. Цитохромы содержат железопорфириновые (гемовые) простетические группы. При этом атом железа, меняя свою валентность, участвует в переносе электронов по дыхательной цепи. В настоящее время цитохромы в соответствии со структурой их простатических групп разделяются на 4 группы: цитохромы а, b, с и d. Цитохромы являются переносчи­ками энергии в биологических системах, будучи компонентами электронно-транспортной цепи митохондрий (цитохромы b, с, а, а3) и хлоропластов (цитохромы b6 и f).

Энергию в клетках переносят также два флавиновых пигмента: флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). Будучи прочно связанными в форме простетических групп, эти окрашенные в желтый цвет флавиновые нуклеотиды являют­ся коферментами флавопротеидов. Активная часть коферментной молекулы - рибофла­вин (витамин В2). Почти все флавопротеиды являются металлопротеидами; в состав их молекул входят Fe, Сu, Мо, Мn.

В дыхательной цепи ФМН и ФАД в качестве промежуточных акцепторов прини­мают от НАД • Н протоны и оба электрона. В восстановленном состоянии флавиновые нуклеотиды бесцветны.

В хлоропластах зеленых растений и фотосинтезирующих бактерий встречается специфический окрашенный белок ферредоксин, в состав которого также входит железо, но не в геминовой форме. Этот низкомолекулярный железопротеид (молекулярная масса около 12 000) имеет красновато-коричневый цвет, у которого два атома железа связаны с кислотолабильными атомами серы, а также с сульфгидрильной группой цистеина. Фер­редоксин — самый сильный биологический восстановитель из известных в настоящее время.

В хлоропластах содержится относительно большое количество желтых пластидных пигментов — каротиноидов. Чаще всего встречаются каротины, ксантофиллы, ликопин и лютеин. Все они являются производными полиизопреноидов и содержат непо­лярные радикалы, что - и определяет гидрофобный характер этих соединений. Основные функции каротиноидов в зеленых растениях: поглощение света и передача энергии кван­тов на хлорофилл; участие в процессе фотосинтетического выделения кислорода; предо­хранение и защита хлорофилла от фото деструкции в условиях избыточного освещения. Существует корреляция между каротиноидами и процессами оплодо­творения, фототропизмами, биологическими ритмами растений и др. При сушке скошенной травы содержащиеся в ней молекулы каротина расщепляются до молекул ионона‚ который и придает сену его специфический запах. Ликопин придает окраску плодам томатов и вместе с каротином – абрикосов. Зеаксантин‚ относящийся к ксантофиллам‚ играет большую роль в создании золотистого цвета растительного мира.

У высших растений обнаружен специфический светочувствительный пигмент бел­ковой природы фитохром, разные формы которого участвуют в физиологических реак­циях фотопериодизма, реагируя на освещение лучами разных участков красной области спектра.

У высших растений обычными являются пигменты клеточного сока – антоцианы, флавонолы и другие флавоноиды. По химической природе это гликозиды фенольного характера. Окраска желтая, розовая, синяя, фиолетовая.

Антоцианы хорошо растворимы в воде. Могут содержаться в клеточных оболочках. При действии кислот антоцианы образуют соли красного (малинового‚ розового)‚ при действии щелочей – синего цвета‚ в нейтральной среде – фиолетового цвета. Цвет антоцианов зависит также от способности этих пигментов образовывать комплексные соединения с металлами‚ белками и сахарами. Много антоцианов накапливают растения‚ произрастающие в суровых климатических условиях‚ а также ранневесенняя флора. Антоцианы поглощают свет в УФ и зеленой областях спектра. Поглощенная энергия частично превращается в тепло‚ повышая температуру листьев‚ пестиков‚ тычинок на 1-4оС. Яркая окраска цветков и плодов‚ определяемая антоцианами‚ играет большую роль в привлечении насекомых-опылителей и в распространении плодов. Из лепестков розы выделен пигмент цианинхлорид‚ из петунии‚ флоксов – мальвинхлорид.

Функции флавоноидов в расте­ниях разнообразны и не до конца изучены. Они защищают фотосинтетический аппарат клетки от повреждающего действия коротковолнового УФ излучения, обладают антиму­тагенной активностью, играют роль индукторов во взаимоотношениях растений с мик­роорганизмами, в ряде случаев служат защитными агентами при поражении растений патогенами. Некоторые флавоноиды, например катехин, гесперетин, рутин, кверцетин относятся к группе витамина Р. Важное значение имеют флавоноиды в определении специфических вкусовых свойств, цвета, аромата чая, кофе, какао, продуктов виноделия.