Синтез АТФ объясняет хемиосмотическая теория Митчелла.

Существует несколько теорий, объясняющих механизм фосфорилирования АТФ, сопряженный с транспортом электронов, но наибольшим признанием пользуется хемиосмотическая теория Митчелла. Ее суть заключается в том, что пластохинон, присоединив два электрона от П680, присоединяет два протона из стромы хлоропласта и переносит их через мембрану во внутритилакоидное пространство. Протоны накапливаются внутри тилакоида и в результате фотоокисления воды. Благодаря неравномерному распределению протонов по обе стороны мембраны создается разность химических потенциалов протонов, и возникает электрохимический мембранный потенциал ионов водорода (DmН). Он включает в себя две составляющие: концентрационную (DрН), возникающую в результате неравномерного распределения протонов по обе стороны мембраны, и электрическую (DY), обусловленную возникновением противоположного заряда на поверхности мембран, т.е. образованием мембранного потенциала. Энергия DрН и DY используется для обратного транспорта протонов из внутритилакоидного пространства в строму хлоропласта по особым каналам. С оратным транспортом протонов сопряжено фосфорилирование АДФ. Сопряжение обратного транспорта протонов и фосфорилирование АДФ обеспечивает Н+-АТФ-синтетаза. Расположенная в тилакоидных мембранах и состоящая из двух частей: каталитической водорастворимой F1, обращенной к строме хлоропласта, мембранной части F0, пронизывающий бислой липидов – это протонный канал, по которому протоны могут возвращаться в строму хлоропласта.

АДФ и фосфат соединяются с ферментом в его каталитической части F1. Два протона, перемещаясь по градиенту концентрации электрохимического потенциала по протонному каналу F0, соединяются с кислородом фосфата, образуя воду. Потеря кислорода активирует фосфатную группу, и она присоединяется к АДФ с образованием АТФ. фермент Н+-АТФ-синтетаза активен, пока транспортируются протоны. Протоны двигаются, если их концентрация во внутритилакоидном пространстве больше. На каждые два электрона, переданных по электрон-транспортной цепи, внутри тилакоида накапливается 4Н+. при возвращении обратно в строму хлоропласта двух протонов синтезируется АТФ – одна молекула.

Темновая фаза фотосинтеза – комплекс биохимических реакций, в результате которых происходит восстановление поглощенного листом СО2, за счет продуктов световой фазы АТФ, НАДФН.

С3-путь фотосинтеза или цикл Кальвина

Этот путь ассимиляции СО2 является самым распространенным и был назван циклом Кальвина в честь американского биохимика М. Кальвина, который с сотрудниками открыл и изучил его в 1946-1956 годах с помощью метода меченых атомов и хроматографии. Цикл состоит из трех этапов:

1. карбоксилирования,

2. восстановления,

3. регенерации первичного акцептора СО2 и синтеза конечного продукта фотосинтеза.

1. Карбоксилирование.Фосфорибулокиназа фосфорилирует при участии АТФ рибулозо-5-фосфат с образованием АДФ и рибулозо-1,5-дифосфата. Последний является акцептором СО2 и под действием рибулозобифосфаткарбоксилазы (РуБФК) присоединяет СО2. В результате образуются 2 молекулы 3-фосфоглицериновой кислоты (3-ФГК). ФГК является первичным продуктом ассимиляции углерода, так как в ее молекуле содержится 3 атома углерода, то этот цикл получил второе название С3.

2. Восстановление.Фосфоглицераткиназа при участии АТФ фосфорилирует 3-ФГК и образовавшаяся 1,3-дифосфоглицериновая кислота восстанавливается с помощью НАДФН и дегидрогеназы фосфоглицеринового альдегида до 3-фосфоглицеринового альдегида (3-ФГА).

3. Регенерация.После фиксации трех молекул СО2 и образования шести молекул 3-ФГА пять из них используются для синтеза рибулозо-5-фосфата, а одна молекула 3-ФГА – для образования глюкозы.

Триозофосфатизомераза превращает 3-ФГА в фосфодиоксиацетон. Затем альдолаза образует из 3-ФГА и фосфодиоксиацетона фруктозо-1,6-дифосфат. Он теряет один остаток фосфорной кислоты под влиянием фруктозо-1,6-дифосфатазы и превращается во фруктозо-6-фосфат. Транскетолаза переносит гликолевый альдегид от фруктозо-6-фосфата на 3-ФГА с образованием эритрозо-4-фосфата и ксилулозо-5-фосфата. Альдолаза присоединяет фосфодиоксиацетон к эритрозо-4-фосфату с образованием седогептулозо-1,7-дифосфата. Он дефосфорилируется фосфатазой и под влиянием транскетолазы соединяется с 3-ФГА. Продуктами этой реакции являются ксилулозо-5-фосфат и рибозо-5-фосфат. Две молекулы ксилулозо-5-фосфата при участии рибулозофосфатэпимеразы и одна молекула рибозо-5-фосфата под действием рибозофосфатизомеразы превращаются в три молекулы рибулозо-5-фосфата.

Если цикл проходит три раза, то образуется 6 молекул ФГА. Пять из шести молекул триозофосфата образуют три молекулы РУбФ, а шестая молекула ФГА является продуктом ассимиляции СО2. Она может превратиться в хлоропласте в первичный крахмал или снова включиться в цикл, или, выйдя в цитозоль, использоваться для образования сахарозы.

Шестая молекула 3-ФГА используется для синтеза фруктозо-1,6-дифосфата при повторении цикла. Из двух молекул фруктозо-1,6-дифосфата образуются фруктозо-6-фосфат и глюкозо-1-фосфат. Последний, взаимодействуя с уридинтрифосфатом, дает уридинфосфоглюкозу. Она и фруктозо-6-фосфат образуют сахарозофосфат, который после дефосфорилирования превращается в сахарозу. Следовательно, для образования одной молекулы сахарозы необходимо прохождение четырех циклов Кальвина. Крахмал синтезируется из уридинфосфоглюкозы под влиянием амилосинтетазы.

Среди продуктов фотосинтеза обнаружены аминокислоты. При недостатке НАДФН 3-ФГК превращается не в 3-ФГА, а в пировиноградную кислоту. Она, присоединяя аммиак, образует аланин. Из пировиноградной кислоты в цикле Кребса образуются органические кислоты, которые в ходе реакций аминирования и переаминирования дают аминокислоты.

С3-путь – основной, но не единственный путь восстановления двуокиси углерода.

 

С4-путь фотосинтеза или цикл Хетча-Слэка

Австралийскими учеными М. Хетчем и К. Слэком был описан С4-путь фотосинтеза, характерный для тропических и субтропических растений однодольных и двудольных 16 семейств (сахарный тростник, кукуруза и др.). Большинство самых злостных сорняков – С4 растения, а большинство сельскохозяйственных культур относятся к С3-растениям. Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки.

В цитоплазме клеток мезофилла фосфоэнолпируваткарбоксилаза присоединяет СО2 к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН (фермент НАДФ+-зависимая малатдегидрогеназа). В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту (фермент - аспартатаминотрансфераза). Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются до пировиноградной кислоты и СО2. СО2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту.

В зависимости от того, какая кислота – малат или аспартат – транспортируется в клетки обкладки, растения делят на два типа: малатный и аспартатный. В клетках обкладки эти С4-кислоты декарбоксилируются, что происходит у разных растений происходит с участием различных ферментов: НАДФ+-зависимой малатдегидрогеназы декарбоксилирующей (НАДФ+-МДГ), НАД+-зависимой малатдегидрогеназы декарбоксилирующей (малик-энзим, НАД+-МДГ) и ФЭП-карбоксикиназы (ФЕП-КК). Поэтому растения делят еще на три подтипа: НАДФ+-МДГ-растения, НАД+-МДГ-растения ФЕП-КК-растения.

Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.

С3, С4-циклы действуют совместно. Такое совместное функционирование двух циклов получило название кооперативного фотосинтеза. Основная функция С4-цикла – концентрирование СО2 для С3-цикла. С4-цикл является своеобразным насосом (углекислотной помпой) для С3-цикла. С помощью которого СО2 атмосферы переносится в С3-цикл. В неблагоприятных условиях у некоторых С3-растений начинает работать и С4-цикл.

Рис. 5.6. Цикл Хэтча и Слэка (С4-путь фотосинтеза).

КС – клеточная стенка (по В. В. Полевому).

 

Фотосинтез по типу толстянковых (суккулентов)

В сухих местах существуют растения-суккуленты, у которых устьица открыты ночью и закрыты днем для уменьшения транспирации. В настоящее время этот тип фотосинтеза обнаружен у представителей 25 семейств.

У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae) процессы фотосинтеза разделены не в пространстве, как у других С4-растений, а во времени. Этот тип фотосинтеза получил название CAM (crassulation acid metabolism)-путь. Устьица днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, и открыты ночью. В темноте СО2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется с образованием СО2 и пировиноградной кислоты. СО2 диффундирует в хлоропласты и включается в цикл Кальвина.

Итак, темновая фаза фотосинтеза разделена во времени: СО2 поглощение ночью, а восстанавливается днем, из ЩУК образуется малат, карбоксилирование в тканях происходит дважды: ночью карбоксилируется ФЕП, днем РуБФ.

В САМ-растения делят на два типа: НАДФ-МДГ-растения, ФЕП-КК-растения.

Как С4, САМ-тип является дополнительным, поставляющим СО2 в С3-цикл у растений, приспособившихся к жизни в условиях повышенных температур или недостатка влаги. У некоторых растений этот цикл функционирует всегда, у других – только в неблагоприятных условиях.

Фотодыхание

Фотодыхание – это активируемый светом процесс выделения СО2 и поглощения О2. Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО2 и высокой концентрации О2 в воздухе. В этих условиях рибулозобисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО2.

Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина.

Итак еще раз подытожим:

1. СО2 образуется во время превращения двух молекул глицина в серин,

2. Кислород расходуется для синтеза гликолата и глиоксилата

3. В течение цикла образуется свободный аммиак, который не выделяется во внешнюю среду, а используется для аминирования оксилутарата, в результате образуется глутамат

4. Во время этого цикла, как и при дыхании, поглощается кислород и выделяется углекислый газ

5. ФГК может использоваться для синтеза сахарозы или крахмала.

В настоящее время глиоксилатный цикл рассматривают как процесс, выполняющий важные функции в растительном организме: источник промежуточных веществ для различных синтезов. Во-вторых, глиоксилатный цикл играет важную роль в образовании таких аминокислот как серин, глицин, почти доказано, что при образовании серина и глицина восстанавливается митохондриальный НАД,
при окислении которого образуется АТФ.