рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЕНЕТИЧЕСКИЙ КОД

ГЕНЕТИЧЕСКИЙ КОД - раздел Биология, СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ Дж. Уотсон И Ф. Крик Определили, Что Генетическая Информа­ция Заключена В Пос...

Дж. Уотсон и Ф. Крик определили, что генетическая информа­ция заключена в последовательности нуклеиновых оснований струк­туры ДНК. После того как было установлено, что синтез белка происходит в цитоплазме, стало очевидным, что должен суще­ствовать точный механизм переноса информации от ДНК, нахо­дящейся в ядре, к белку.

Зависимость между последовательностью оснований ДНК и последовательностью аминокислотных остатков в белке получила название генетического кода.

Если бы каждый отдельный из нуклеотидов кодировал одну аминокислоту, то белок мог включать только четыре аминокисло­ты. Если каждая аминокислота кодировалась бы только двумя ос­нованиями, то это позволило бы закодировать 16 аминокислот. Од­нако лишь код, состоящий из трех оснований, может обеспечить включение в белок всех известных аминокислот. Подобный код со­держит 64 различных сочетания из трех нуклеотидов. Доказатель­ства триплетности генетического кода были впервые получены Ф. Криком в экспериментах с фагом Т4.

В конце пятидесятых годов два ученых, М. Нирснберг и Г. Маттеи, искусственно получили (синтезировали) РНК, состоящую из многократно повторяющегося урацила (поли-У). Это соедине­ние (полиуридиловая кислота) было использовано в качестве мРНК. В каждую из 20 пробирок (по числу известных аминокислот) был внесен бесклеточный экстракт Е. соli, содержащий все необходи­мые компоненты для синтеза белка (рибосомы, тРНК, АТФ, дру­гие ферменты), и одна из аминокислот. Затем в каждую пробирку добавляли поли-У. Анализ содержимого пробирок показал, что полипептид образовался только в той пробирке, которая содержа­ла аминокислоту фенилаланин. Таким образом, было доказано, что триплет, или кодон УУУ,

входящий в мРНК,определяет вклю­чение в полипептид аминокислоты фенилаланин. Аналогичные опыты показали, что триплет ЦЦЦ кодирует аминокислоту пролин, а типлет ААА — лизин. Это открытие явилось первым шагом к расшифровке генетического кода. К 1965 г. генетический код был полностью расшифрован (рис. IV. 13). Из 64 кодонов три кодона УАГ, УАА, УГА не кодируют аминокислот и поэтому были назва­ны бессмысленными или нонсенс-кодонами. Позднее оказалось, что они являются терминирующими кодонами. Назовем основные свойства генетического кода.

 

 

1. Генетический код тршиетен. Триплет (кодон) — это после­довательность трех нуклеотидов, кодирующая одну аминокислоту.

2. Генетический код является вырожденным: данная аминокис­лота может кодироваться более чем одним кодоном. Вырожден­ность кода обусловлена тем, что у кодонов, определяющих одну и ту же аминокислоту, первые два основания фиксированы, а тре­тье положение может занимать другое основание. Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Триплет, соответствующий метионину (АУГ), ини­циирует считывание и не кодирует аминокислоту, если стоит в начале цепи ДНК.

3. Генетический код однозначен. Каждому кодону соответствует только одна аминокислота, т.е. триплет шифрует только одну ами­нокислоту.

4. Генетический код не перекрываем — процесс считывания гене-угичсского кода не допускает возможности перекрывания кодонов.

5. Генетический код универсален: одни и те же триплеты коди­руют одни и те же аминокислоты у всех живых существ на Земле независимо от уровня их организации.

 

– Конец работы –

Эта тема принадлежит разделу:

СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ

НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ... Наследственность и изменчивость являются важнейшими факто рами эволюции всего живого на Земле Под...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЕНЕТИЧЕСКИЙ КОД

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ
Все живые организмы в зависимости от типа составляющих их клеток разделяют на эукариоты (клетки, имеющие ядро) и прока­риоты (клетки, у которых оформленное ядро отсутствует). Из эука-

КЛЕТОЧНЫЙ ЦИКЛ И ЕГО ПЕРИОДЫ
Клеточный цикл — это период жизнедеятельности клетки от конца одного деления до конца следующего, который состоит, гаким образом, из стадии относительного покоя, или интерфазы, и деления кле

МИТОЗ - ДЕЛЕНИЕ СОМАТИЧЕСКОЙ КЛЕТКИ
Наиболее универсальным способом деления соматических кле­ток, т.е. клеток тела (от греч. soma - тело), является митоз. Этот вид деления клеток был впервые описан немецким гистологом В.Флемин

МЕЙОЗ - ДЕЛЕНИЕ СОЗРЕВАНИЯ ПОЛОВЫХ КЛЕТОК
Возникновение многоклеточности сопровождается специализа­цией тканей организма: наряду с появлением соматических тка­ней (костная, мышечная, соединительная и т.д.) обособляется ткань, дающая начало

НАСЛЕДСТВЕННОСТИ
  На последних этапах, предшествующих делению клетки, ядерный материал (хроматин) претерпевает определенные физико-химические изменения, приводящие к конденсации нитеобразных структур

ВИДИМОЕ СТРОЕНИЕ ХРОМОСОМ И ИХ МОРФОЛОГИЯ
При анализе метафазных пластинок в световом микроскопе можно различить, что любая хромосома состоит из двух плеч и центромеры,или первичной перетяжки,выполняющей ф

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ
В 1902 г., вскоре после вторичного открытия законов Менделя, 'два генетика — А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образ

ДОКАЗАТЕЛЬСТВА ГЕНЕТИЧЕСКОЙ РОЛИ НУКЛЕИНОВОЙ КИСЛОТЫ
История изучения нуклеиновых кислот начинается с 1869 г., когда швейцарский химик Ф.Мишер обнаружил в клеточном ядре осо­бые вещества, обладающие свойствами кислот. Он дал им название нуклеиновых к

ХИМИЧЕСКОЕ СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
Нукдеиновая кислота представляет собой гигантскую полимерную молекулу, построенную из многочисленных повторяющихся мономерных звеньев, назыв

Строение ДНК
Пространственная конфигурация молекул ДНК была установ­лена в 1953 г. Это открытие было удостоено высшей научной на­грады — Нобелевской премии. Согласно модели, предложе

Строение и функции РНК
Молекулы РНК в отличие от ДНК являются однонитевыми структурами. Схема построения РНК аналогична ДНК: основу об­разует сахарно-фосфатный остов, к которому присоединяются азотистые основания. Различ

ТРАНСЛЯЦИЯ
Трансляция («перевод») — это процесс реализации информации, закодированной в структуре мРНК, в последовательность аминокислотных остатков белка. Центральное место в трансляции принадлежит рибосомам

ТИПЫ ИЗМЕНЧИВОСТИ
С эволюционной точки зрения различают два вида биологиче­ской изменчивости: групповую изменчивость,под которой пони­мают различия между популяциями, этносами или расами, и

Ненаследственная изменчивость
При фенотипической изменчивости наследственный материал в изменения не вовлекается. Они касаются только признаков ин­дивида и происходят под действием факторов внешней и внутрен­ней среды. Подобные

Наследственная изменчивость
Генотипическая изменчивость в зависимости от природы клеток подразделяется на генеративную (изменения в наследственном аппарате гамет) и соматическую (изменения в нас

МУТАГЕНЫ
Причинами, вызывающими мутации (нарушения структуры генов, структуры хромосом или изменения их числа), могут быть различные факторы (рис. VI.2). Их обозначают как мутагены(от лат.

ТИПЫ МУТАЦИЙ
Мутации являются начальным звеном патогенеза наследствен­ных болезней. По виду клеток, в которых произошли изменения, мутации можно разделить на: гамегпические (от греч.

Генные мутации
Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутаци­ям генов относятся любые изменения молекулярной структуры ДНК, независимо от их ло

Геномные и хромосомные мутации
Геномные и хромосомные мутации являются причинами воз­никновения хромосомных болезней (см. рис. VI.3). К геномным мутациямотносятся анеуплоидии и изменение плоиднос

Х.1.1. Аутосомно-доминантные заболевания
  Примером аутосомно-доминантного заболевания может служить синдром Марфана,для которого характерны высокая пенетрантность и различная экспрессивность. Ч

Аутосомно-рецессивные заболевания
Среди аутосомно-рецессивных заболеваний наиболее распрос­траненным является муковисцидоз(кистофиброз поджелудочной железы). Частота его среди новорожденных в европейской п

Х-сцепленные рецессивные заболевания
Одной из самых частых и тяжелых форм наследственных забо­леваний с Х-сцепленным наследованием является псевдогипер­трофическая мышечная дистрофияДюшенна, относящаяся к груп­пе нерв

Х.2.1. Количественные нарушения аутосом
Синдром Дауна (болезнь Дауна)впервые был описан в 1866 г. английским педиатром Л.Дауном, но только в 1959 г. француз­ским генетиком и врачом Дж.Леженом было доказано, что это забол

Количественные нарушения половых хромосом
Изменение числа половых хромосом может возникать в резуль­тате нарушения расхождения как в первом, так и во втором деле­нии мейоза. Нарушение расхождения в первом делении приводит к образованию ано

Структурные нарушения аутосом
Выше были описаны синдромы, обусловленные избыточным числом хромосом (трисомии, полисомии) или отсутствием поло­вой хромосомы (моносомии X), т.е. геномными мутациями. Хромосомные болезни,

БОЛЕЗНИ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ
Возникновение широко распространенных заболеваний, кото­рые вносят наибольший вклад в заболеваемость, инвалидизацию и смертность населения, обусловлено взаимодействием наследствен­ных факторов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги