рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ДОКАЗАТЕЛЬСТВА ГЕНЕТИЧЕСКОЙ РОЛИ НУКЛЕИНОВОЙ КИСЛОТЫ

ДОКАЗАТЕЛЬСТВА ГЕНЕТИЧЕСКОЙ РОЛИ НУКЛЕИНОВОЙ КИСЛОТЫ - раздел Биология, СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ История Изучения Нуклеиновых Кислот Начинается С 1869 Г., Когда Швейцарский Х...

История изучения нуклеиновых кислот начинается с 1869 г., когда швейцарский химик Ф.Мишер обнаружил в клеточном ядре осо­бые вещества, обладающие свойствами кислот. Он дал им название нуклеиновых кислот (от лат. nukleus — ядро). Долгое время нуклеи­новые кислоты не привлекали внимания исследователей. И только после того как в опытах английского бактериолога Ф.Гриффита (1928) была продемонстрирована способность пневмококков к трансформации, было выдвинуто предположение о том, что «транс­формирующий агент», отождествляемый с «веществом наследствен­ности», находится в ядре. Суть эксперимента Гриффита заключа­лась в следующем. При введении мышам непатогенных штаммов пневмококков (рис. IV.1) животные не заболевали (Б). При введе­нии патогенных штаммов мыши гибли (А), однако при введении патогенных микробов, убитых нагреванием, мыши оставались здо­ровыми (В). Гриффит показал, что при одновременном введении.

К началу 50-х гг. было получено множество данных (на различ­ных объектах), свидетельствуюших об универсальности ДНК как носителя генетической информации. Большое количество экспе­риментов было проведено на вирусах. Вирусы, как было сказано ранее, имеют относительно простое строение: они состоят из бел­ковой оболочки, содержащей атомы серы, и заключенной внутри нее молекулы нуклеиновой кислоты, содержащей атомы фосфора. В 1952 г. А.Херши и М.Чейз проводили эксперименты с бактерио­фагом Т2 — особым видом вируса, убивающим зараженную бакте­риальную клетку (отсюда и название «бактериофаг», т.е. пожира­тель бактерии). Бактериофаг, проникая в кишечную палочку Еscherichia coli (Е. соli), быстро в ней размножается. Эксперимента­торы размножали бактериофаги в клетках Е. соli, которые росли на двух различных средах: на среде, содержащей радиоактивный изо­топ серы (35S), и на среде, содержащей радиоактивный изотоп фосфора (32Р). Фаги, которые размножились на клетках, выросших на среде с радиоактивным изотопом серы, включали 35S только в свои белковые оболочки. Фаги, размножившиеся на клетках, ко­торые выросли на среде с радиоактивным фосфором, содержали ДНК, меченную 32Р. Затем полученными бактериофагами заража­ли клетки Е. соli, выращенные на обычной среде. Через короткое время эти клетки интенсивно встряхивали, чтобы отделить бакте­риофаги от стенок Е. соli. Затем делали анализ бактерии на наличие радиоактивности. Оказалось, что бактерии, зараженные фагами, выросшими на 35S, не содержали радиоактивной метки, в то вре­мя как бактерии, зараженные фагами, размножившимися на 32Р, были радиоактивными. Полученные результаты позволили авторам сделать два принципиальных вывода: 1) в бактериальную клетку проникает только фаговая ДНК, которая, размножаясь в клетке Е. соli, дает начало многочисленному потомству; 2) наследствен­ным материалом является ДНК, которая определяет не только струк­туру и свойства ДНК потомства, но и свойства фаговых белков.

В 1953 г. Дж. Уотсон и Ф. Крик на основании результатов рентгеноструктурного анализа и биохимических данных предложили про­странственную модель структуры ДНК, объясняющую все ее свой­ства. Согласно предложенной модели молекула ДНК состоит из двух комплементарных (соответствующих) нитей. М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации (удвоения) ДНК.

Выяснение структуры и функции нуклеиновых кислот позво­лило понять, каким образом живые организмы воспроизводят себя и как осуществляются кодирование генетической информации, ее хранение и реализация, необходимые для протекания всех жиз­ненных процессов.

К настоящему времени существенным образом обогащены зна­ния о структуре и функции ДНК, значительно расширены воз­можности для исследований. Было обнаружено, что ДНК может повреждаться и может восстанавливаться, что молекулы ДНК мо­гут обмениваться друг с другом частями, закручиваться и раскру­чиваться. Было показано, что ДНК служит матрицей для синтеза РНК, а также сама способна синтезироваться в процессе обратной транскрипции с РНК. ДНК функционирует не только в ядре, но и в митохондриях. В настоящее время исследователи способны опре­делять последовательность нуклеиновых оснований в ДНК и осу­ществлять ее синтез.

 

– Конец работы –

Эта тема принадлежит разделу:

СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ

НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ... Наследственность и изменчивость являются важнейшими факто рами эволюции всего живого на Земле Под...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ДОКАЗАТЕЛЬСТВА ГЕНЕТИЧЕСКОЙ РОЛИ НУКЛЕИНОВОЙ КИСЛОТЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ
Все живые организмы в зависимости от типа составляющих их клеток разделяют на эукариоты (клетки, имеющие ядро) и прока­риоты (клетки, у которых оформленное ядро отсутствует). Из эука-

КЛЕТОЧНЫЙ ЦИКЛ И ЕГО ПЕРИОДЫ
Клеточный цикл — это период жизнедеятельности клетки от конца одного деления до конца следующего, который состоит, гаким образом, из стадии относительного покоя, или интерфазы, и деления кле

МИТОЗ - ДЕЛЕНИЕ СОМАТИЧЕСКОЙ КЛЕТКИ
Наиболее универсальным способом деления соматических кле­ток, т.е. клеток тела (от греч. soma - тело), является митоз. Этот вид деления клеток был впервые описан немецким гистологом В.Флемин

МЕЙОЗ - ДЕЛЕНИЕ СОЗРЕВАНИЯ ПОЛОВЫХ КЛЕТОК
Возникновение многоклеточности сопровождается специализа­цией тканей организма: наряду с появлением соматических тка­ней (костная, мышечная, соединительная и т.д.) обособляется ткань, дающая начало

НАСЛЕДСТВЕННОСТИ
  На последних этапах, предшествующих делению клетки, ядерный материал (хроматин) претерпевает определенные физико-химические изменения, приводящие к конденсации нитеобразных структур

ВИДИМОЕ СТРОЕНИЕ ХРОМОСОМ И ИХ МОРФОЛОГИЯ
При анализе метафазных пластинок в световом микроскопе можно различить, что любая хромосома состоит из двух плеч и центромеры,или первичной перетяжки,выполняющей ф

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ
В 1902 г., вскоре после вторичного открытия законов Менделя, 'два генетика — А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образ

ХИМИЧЕСКОЕ СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
Нукдеиновая кислота представляет собой гигантскую полимерную молекулу, построенную из многочисленных повторяющихся мономерных звеньев, назыв

Строение ДНК
Пространственная конфигурация молекул ДНК была установ­лена в 1953 г. Это открытие было удостоено высшей научной на­грады — Нобелевской премии. Согласно модели, предложе

Строение и функции РНК
Молекулы РНК в отличие от ДНК являются однонитевыми структурами. Схема построения РНК аналогична ДНК: основу об­разует сахарно-фосфатный остов, к которому присоединяются азотистые основания. Различ

ТРАНСЛЯЦИЯ
Трансляция («перевод») — это процесс реализации информации, закодированной в структуре мРНК, в последовательность аминокислотных остатков белка. Центральное место в трансляции принадлежит рибосомам

ГЕНЕТИЧЕСКИЙ КОД
Дж. Уотсон и Ф. Крик определили, что генетическая информа­ция заключена в последовательности нуклеиновых оснований струк­туры ДНК. После того как было установлено, что синтез белка происходит в цит

ТИПЫ ИЗМЕНЧИВОСТИ
С эволюционной точки зрения различают два вида биологиче­ской изменчивости: групповую изменчивость,под которой пони­мают различия между популяциями, этносами или расами, и

Ненаследственная изменчивость
При фенотипической изменчивости наследственный материал в изменения не вовлекается. Они касаются только признаков ин­дивида и происходят под действием факторов внешней и внутрен­ней среды. Подобные

Наследственная изменчивость
Генотипическая изменчивость в зависимости от природы клеток подразделяется на генеративную (изменения в наследственном аппарате гамет) и соматическую (изменения в нас

МУТАГЕНЫ
Причинами, вызывающими мутации (нарушения структуры генов, структуры хромосом или изменения их числа), могут быть различные факторы (рис. VI.2). Их обозначают как мутагены(от лат.

ТИПЫ МУТАЦИЙ
Мутации являются начальным звеном патогенеза наследствен­ных болезней. По виду клеток, в которых произошли изменения, мутации можно разделить на: гамегпические (от греч.

Генные мутации
Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутаци­ям генов относятся любые изменения молекулярной структуры ДНК, независимо от их ло

Геномные и хромосомные мутации
Геномные и хромосомные мутации являются причинами воз­никновения хромосомных болезней (см. рис. VI.3). К геномным мутациямотносятся анеуплоидии и изменение плоиднос

Х.1.1. Аутосомно-доминантные заболевания
  Примером аутосомно-доминантного заболевания может служить синдром Марфана,для которого характерны высокая пенетрантность и различная экспрессивность. Ч

Аутосомно-рецессивные заболевания
Среди аутосомно-рецессивных заболеваний наиболее распрос­траненным является муковисцидоз(кистофиброз поджелудочной железы). Частота его среди новорожденных в европейской п

Х-сцепленные рецессивные заболевания
Одной из самых частых и тяжелых форм наследственных забо­леваний с Х-сцепленным наследованием является псевдогипер­трофическая мышечная дистрофияДюшенна, относящаяся к груп­пе нерв

Х.2.1. Количественные нарушения аутосом
Синдром Дауна (болезнь Дауна)впервые был описан в 1866 г. английским педиатром Л.Дауном, но только в 1959 г. француз­ским генетиком и врачом Дж.Леженом было доказано, что это забол

Количественные нарушения половых хромосом
Изменение числа половых хромосом может возникать в резуль­тате нарушения расхождения как в первом, так и во втором деле­нии мейоза. Нарушение расхождения в первом делении приводит к образованию ано

Структурные нарушения аутосом
Выше были описаны синдромы, обусловленные избыточным числом хромосом (трисомии, полисомии) или отсутствием поло­вой хромосомы (моносомии X), т.е. геномными мутациями. Хромосомные болезни,

БОЛЕЗНИ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ
Возникновение широко распространенных заболеваний, кото­рые вносят наибольший вклад в заболеваемость, инвалидизацию и смертность населения, обусловлено взаимодействием наследствен­ных факторов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги