Хромосомная теория наследственности

Правила постоянства числа, парности, индивидуальности и непрерывности хромосом, сложное поведение хромосом при митозе и мейозе давно убедили исследователей в том, что хромосомы играют большую биологическую роль и имеют прямое отношение к передаче наследственных свойств. В предыдущих разделах уже были даны цитологические объяснения закономерностей наследования, открытых Менделем. Роль хромосом в передаче наследственной информации была доказана благодаря; а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующих числу хромосом;

в) построению генетических, а затем и цитологических карт хромосом.

Наследование пола и хромосомы. Одним из первых и веских доказательств роли хромосом в явлениях наследственности явилось открытие закономерности, согласно которой пол наследуется как менделирующий признак, т.е. наследуется по законам Менделя.Известно, что хромосомы, составляющие одну гомологичную пару, совершенно подобны друг другу, но это справедливо лишь в отношении аутосом. Половые хромосомы, или гетерохромосомы, могут сильно разниться между собой как по морфологии, так и по заключенной в них генетической информации. Сочетание половых хромосом в зиготе определяет пол будущего организма. Большую из хромосом этой пары принято называть X (икс)-хромосомой, меньшую - Y (игрек)-хромосомой. У некоторых животных Y-хромосома может отсутствовать. У всех млекопитающих (в том числе у человека), у дрозофилы и многих других видов животных женские особи в соматических клетках имеют две X-хромосомы, а мужские - Х- и Y-хромосомы. У этих организмов все яйцевые клетки содержат Х-хромосомы, и в этом отношении все одинаковы. Сперматозооны у них образуются двух типов: одни содержат Х-хромосому, другие Y-хромосому, поэтому при оплодотворении возможны две комбинации:

1. Яйцеклетка, содержащая Х-хромосому, оплодотворяется сперматозооном тоже с Х-хромосомой. В зиготе встречаются две Х-хромосомы. Из такой зиготы развивается женская особь.

2. Яйцеклетка, содержащая Х-хромосому, оплодотворяется сперматозооном, несущим Y-хромосому. В зиготе сочетаются Х- и Y-хромосомы. Из такой зиготы развивается мужской организм.

Пол, имеющий обе одинаковые половые хромосомы, называется гомогаметмым, так как все гаметы одинаковые, а пол с различными половыми хромосомами, при котором образуются два типа гамет, называется гетерогаметным. Наследование, сцепленное с полом. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола. Лицо женского пола может быть как гомо-, так и гетерозиготным по генам, локализованным в Х-хромосоме, а рецессивные аллели генов у него проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, все локализованные в ней гены, даже рецессивные, сразу же проявляются в фенотипе. Такой организм называют гемизиготным.

При записи схемы передачи признаков, сцепленных с полом, в генетических формулах наряду с символами генов указывают и половые хромосомы. Признаки, которые наследуются через Y-хромосому, получили название голандрических. Они передаются от отца всем его сыновьям. К числу таких у человека относится признак, проявляющийся в интенсивном развитии волос на крае ушной раковины.

Сцепление генов а кроссинговер. Во всех примерах скрещивания, которые приводились выше, имело место независимое комбинирование генов, относящихся к различным аллельным парам. Оно возможно только потому, что рассматриваемые нами гены локализованы в различных парах хромосом. Однако число генов значительно превосходит число хромосом. Следовательно, в каждой хромосоме локализовано много Генов, наследующихся совместно. Гены, локализованные в одной хромосоме, называются группой сцепления. Понятно, что у каждого вида организмов число групп сцепления равняется числу пар хромосом, т. е. у дрозофилы их 4, у гороха - 7., у кукурузы - 10, у томата - 12 и т. д. Следовательно, установленный Менделем принцип независимого наследования и комбинирования признаков проявляется только тогда, когда гены, определяющие эти признаки, находятся в разных парах хромосом (относятся к различным группам сцепления). Однако оказалось, что гены, находящиеся в одной хромосоме, сцеплены не абсолютно. Во время мейоза, при конъюгации хромосом гомологичные хромосомы обмениваются идентичными участками. Этот процесс получил название кроссинговера, или перекреста. Кроссинговер может произойти в любом участке хромосомы, даже в нескольких местах одной хромосомы. Чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Обмен. участками между гомологичными хромосомами имеет большое значение для эволюции, так как непомерно увеличивает возможности комбинативной изменчивости. Вследствие перекреста отбор в процессе эволюции идет не по целым группам сцепления, а по группам генов и даже отдельным генам. Ведь в одной группе сцепления могут находиться гены, кодирующие наряду с адаптивными (прнспособительными) и неадаптивные состояния признаков. В результате перекреста «полезные» для организма аллели могут быть отделены от «вредных» и, следовательно, возникнут более выгодные для существования вида генные комбинации - адаптивные. Примером тесного сцепления генов у человека может служить наследование резус-фактора. Оно обусловлено тремя парами генов С, Д, К., тесно сцепленных между собой, поэтому наследование его происходит по типу моногибридного скрещивания. Резус-положительный фактор обусловлен доминантными аллелями. Поэтому при браке женщины, имеющей резус-отрицательную группу крови, с мужчиной, у которого резус-фактор положительный, если он гомозиготен, все дети будут резус-положительными; если гетерозиготен, следует ожидать расщепления по этому признаку в соотношении

Точно так же близко расположены в Х-хромосоме гены гемофилии и дальтонизма. Если уж они есть, то наследуются вместе, а находящиеся в той же хромосоме гены альбинизма локализованы на значительном расстоянии от гена дальтонизма и могут дать с ним высокий процент перекреста.

Линейное расположение генов. Генетические карты. Существование кроссинговера позволило школе Моргана разработать в 1911-1914 гг. принцип построения генетических карт хромосом. В основу этого принципа положено представление о расположении генов по длине хромосомы в линейном порядке. За единицу расстояния между двумя генами условились принимать 1 % перекреста между ними. Эту величину называют морганидой. в честь генетика Т.Г. Моргана.

Допустим, что к одной группе сцепления относятся гены А и В. Между ними обнаружен перекрест в 10%. Следовательно, эти гены находятся на расстоянии 10 единиц (морганид). Допустим далее, что к этой же группе сцепления относится ген С. Чтобы узнать его место в хромосоме, необходимо выяснить, какой процент перекреста он дает с обоими из двух уже известных генов. Например, если с А он дает 3% перекреста, то можно предположить, что ген С находится либо между А и В, либо в противоположной стороне, т.е. А расположен между С и В. В общей форме эту закономерность можно выразить следующей формулой: если гены А, В, С относятся к одной группе сцепления и расстояние между генами А и В равно k единицам, а расстояние между В и С равно l единицам, то расстояние между A и С может быть либо k+l, либо kl.

Начато составление карт хромосом человека. Уже известны 24 группы сцепления: 22 аутосомные и 2 сцепленные с полом в Х- и Y-хромосомах. Генетические карты хромосом строятся на основе гибридологического анализа. Однако найден способ построения и цитологических карт хромосом для дрозофилы. Дело в том, что в клетках слюнных желез личинок мух обнаружены гигантские хромосомы, превышающие размеры хромосом из других клеток в 100-200 раз и содержащие в 1000 раз больше хромонем. Оказалось, что в тех случаях, когда гибридологическим методом обнаруживались какие-либо нарушения наследования, соответствующие им изменения имели место и в гигантских хр