Хромосомы

В ядре хромосомы являются материальными носителями информации на клеточном кровне.

Прямыми доказательствами этого являются наследственные болезни, связанные с нарушением числа и структуры хромосом.

Косвенными доказательствами этой функции хромосом являются правила хромосом:

- Правило постоянства числа хромосом. Число хромосом и особенности их строения видовой признак

- Правило парности хромосом. Число хромосом в соматических клетках всегда четное, это связано с тем, что хромосомы составляют пары, т.к. одна хромосома при половом размножении идет от отцовского организма, а вторая от материнского. Хромосомы, относящиеся к одной паре, одинаковые по величине, форме и расположению центромер называются гамологичными.

- Правило индивидуальности хромосом. Каждая пара хромосом характеризуется своими особенностями. Негомологичные хромосомы всегда имеют ряд отличий.

- Правило непрерывности хромосом. Хромосомы способны к авторепродукции (в результате репликации ДНК). «Дочерние» хромосомы образуются в результате расхождения хроматид материнской хромосомы в анафазу митоза или мейоза 2, что обеспечивает непрерывную передачу наследственной информации при делении клеток.

Компактизация, спирализация или укладка ДНК в хромосому происходит следующим образом: выделяют несколько уровней укладки ДНК в хромосому:

нуклеосомный

нуклеомерный

хромомерный

хромонемный

хромосомный

Структурно-функциональной единицей хромосом на молекулярном уровне является нуклеосома.

Сердцевиной нуклеосомы является октамер из 8 молекул гистоновых белков. Это так называемый «нуклеосомный кор». Молекула ДНК накручивается на октамер. Через линкерный участок связанный с гистоновым белком ДНК переходит на другую нуклеосому, образуя так называемые «бусинки на нитке».Примерно 90 % ДНК входит в состав нуклеосом, а 10 % на линкерные участки между нуклеосомами. Количество нуклеосом в ядре огромно. Этот уровень обеспечивает сверхскручивание ДНК на поверхности гистоновой сердцевины и укорочение ДНК в 7 раз.

Нуклеомерный уровень укладки хроматина обеспечивает сорокократное укорочение ДНК. Как нуклеосомный, так и нуклеомерный уровень уровень компактизации ДНК хроматина осущетвляется за счет гистоновых белков. Нуклеосомная фибрилла скручивается в спираль. Нуклеомерный тип укладки заключается в том, что 8-10 нуклеосом объединяются в нуклеомер («сверхбусина»). В результате такой упаковки образуется хроматиновое волокно, которое подвергается дальнейшей компактизации с уменьшением длины в 100 раз. Все остальные уровни компактизации связаны с укладкой хроматиновых фибрилл в новые структуры, где ведущую роль играют негистоновые белки.

Негистоновые белки связываются с особыми участками ДНК, которая в местах связывания образует большие петли или домены. Петли доменов заякорены на внутреннем поддерживающем матриксе ламине, которая прилегает к внутренней ядерной мембране. Следующие более высокие уровни компактизации ДНК связаны не с ее дополнительной спирализацией, а с образованием поперечной петельной структуры.

Белки ядерного матрикса формируют не сплошной остов по длине хромосомы, а множество отдельных центров, к которым крепятся петли ДНК, образуя розетки (хромомеры)

Белки образуют в центре хромосомы непрерывный тяж, к которому крепятся петли нуклеомеров. Затем сближенные хромомеры образуют толстые нити. Эти образования называют хромонемы.

И последний уровень структурной организации хроматина хроматидный. Хромонемы укладываются спирально или петлеобразно, образуя хроматиду.

Метафазная хромосома состоит из двух хроматид, соединенных первичной перетяжкой центромерой. Таким образом, в результате в результате суперспирализации происходит компактизация ДНК и образование хромосом. Это необходимый этам организации хроматина в подготовке к клеточному делению.

Хроматин, нуклеопротеид клеточного ядра, составляющий основу хромосом. В состав хроматина входят: ДНК (30-40% по массе), гистоны (30-50%), негистоновые белки (4-33%) и РНК. В зависимости от степени конденсации (плотности упаковки) и коррелирующей с ней активности хроматина в интерфазе различают гетерохроматин и эухроматин. Гетерохроматин бывает конститутивный (структурный) и факультативный. Если для факультативного гетерохроматина конденсированное (плотно упакованное) состояние - явление временное, наступающее как следствие инактивации хроматина, например, в ходе развития или дифференцировки, то конститутивный гетерохроматин конденсирован всегда. Функции его неясны.

Эухроматин отличается от гетерохроматина менее плотной упаковкой хромосом.ого материала, большим кол-вом негистоновых белков и др. Может инактивироваться и приобретать свойства факультативного гетерохроматина.