рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МЕТОДЫ ВОССТАНОВЛЕНИЯ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ПРОШЛОГО

МЕТОДЫ ВОССТАНОВЛЕНИЯ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ПРОШЛОГО - раздел Геология, ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ Тектонические Движения Являются Одним Из Важнейших Факторов В Развитии Геолог...

Тектонические движения являются одним из важнейших факторов в развитии геологических процессов, изменяющих лик Земли. Они приводят к преобразованию земной коры, изменяют фор­мы рельефа поверхности, очертания суши и моря, воздействуя тем самым на климат. Тектоничес­кие движения влияют на вулканизм, на процессы осадконакопления и определяют размещение по­лезных ископаемых в земной коре.

Тектонические движения выражаются в виде медленных поднятий и опусканий, приводящих к трансгрессиям и регрессиям моря в виде общего смятия земной коры с образованием высоких


горных массивов и глубоких впадин, образованием складок, а также в форме разрушительных землетрясений, которые сопровождаются возникновением трещин со значительным смещением блоков коры по вертикали и горизонтали.

В зависимости от направления напряжения тектонические движения подразделяют на верти­кальные (радиальные) и горизонтальные (тангенциальные). При анализе вертикальных движений различают восходящие (положительные) и нисходящие (отрицательные) движения. Этим движе­ниям чаще соответствуют медленные, плавные поднятия или опускания, охватывающие террито­рии континентов и океанических впадин или их частей. Это эпейрогенические движения (греч. "эпейрос" - материк).

Движения тангенциальные (по касательной к поверхности земной коры) связаны с опреде­ленными зонами и приводят к существенным деформациям земной коры. Это орогенические дви­жения (греч. "орос" - гора).

Тектонические движения и возникающие при этом структуры земной коры изучают геотекто­ника и структурная геология.

Для восстановления тектонических движений прошедших эпох используют специальные ме­тоды, позволяющие воссоздать общую картину тектонических движений для определенной эпохи.

О характере современных тектонических движений мы судим, наблюдая современные про­цессы, которые наглядно проявляются в областях активных землетрясений и вулканизма: 1) совре­менные вертикальные тектонические движения фиксируются путем повторного нивелирования; 2) новейшие движения, т.е. происходившие в неоген-четвертичное время, изучают с помощью гео­морфологических методов, анализируя рельеф поверхности Земли, морфологию речных долин, расположение морских террас, мощность четвертичных отложений.

я ,'. Значительно труднее изучать тектонические движения прошлых геологических эпох. Метода­ми изучения этих движений являются: 1) анализ стратиграфического разреза; 2) анализ литолого-палеогеографических карт; 3) анализ мощностей; 4) анализ перерывов и несогласий; 5) структур-цый анализ; 6) палеомагнитный анализ; 7) формационный анализ.

1) Анализ стратиграфического разрезапозволяет проследить тектонические движения не­
большого участка земной коры в течение длительного времени. Исходным материалом для анализа
является стратиграфический разрез (колонка), который необходимо исследовать с позиций измене­
ния обстановки накопления пород в их стратиграфической последовательности. Изучая веще­ственный состав, структурные и текстурные особенности пород, заключенные в них окаменелос­ти, удается выделить типы отложений, которые накапливаются на различных гипсометрических
уровнях относительно уреза воды морского бассейна и соответственно охарактеризовать обстанов­ку осадконакопления. Отрицательные тектонические движения в условиях стабильного выноса обломочного материала в бассейн приводят к углублению его дна и смене вверх по разрезу мелковод­ных отложений более глубоководными. Наоборот, положительные тектонические движения приводят к обмелению бассейна и смене по разрезу глубоководных отложений мелководными, наземными идалее размывом ранее накопившихся отложений. Отрицательные тектонические движения способствуют развитию морских трансгрессий, а положительные вызывают регрессию.

2) Литолого-палеогеографический анализ.Анализ литолого-палеогеографических карт позволяет судить о направленности движений и распределении прогибов и поднятий на площади. Обычно
области аккумуляции отложений соответствует отрицательная структура, области денудации - положи­
тельная. В связи с дифференцированностью движений на фоне крупной отрицательной структуры могут выделяться участки относительных поднятий с морскими мелководными отложениями среди более глубоководных. Такой участок представляет собой подводное поднятие - отмель и может соответ­ствовать растущей антиклинальной структуре. Участок распространения относительно глубоководных
отложений среди мелководных должен отвечать впадине на дне бассейна.


Обычно характер тектонических движений более отчетливо выявляется при анализе литолого-палеогеографических карт, составленных для нескольких последовательных отрезков времени.

3) Анализ мощностей.На участках ускоренного прогибания накапливаются осадки большей
мощности, на участках замедленного прогибания - меньшей мощности, в областях воздымания -
мощности равны нулю.

Данные о мощностях одновозрастных отложений наносят на карты; точки равных мощностей соединяют линиями - изопахитами (рис. 23). По картам с изопахитами можно судить о распреде­лении участков относительных прогибов и поднятий. Однако анализ мощностей необходимо совмещать с анализом фациаль-

Рис. 23. Карта равных мощностей одновозрастной песчано-глинистой толщи (изолинии мощностей намечают положение прогиба, формировавшегося во время осадконакопления): / - точка замера и мощность (в м); 2 - изолинии мощностей (изопахиты). (Заимствовано у Г.И.Немкова и др., 1986)

ной обстановки накопления осадка, т.к. он применим только для определенных условий осадконакопления, когда скорость про­гибания ложа компенсируется скоростью накопления на нем

осадков. В случае декомпенсированного разреза в течение огромных промежутков времени может

накопиться незначительный по мощности слой осадка.

4) Анализ перерывов и несогласий.Положительные тектонические движения в стратигра­фическом разрезе выражаются сменой относительно глубоководных отложений мелководными,
мелководных — прибрежными и континентальными. В таком случае, если эти движения привели к
подъему накопившихся осадков выше уровня моря, начинается их размыв. При последующем по­гружении новая серия осадков ложится на размытую поверхность, которая называется поверхнос­тью перерыва или поверхностью несогласия. Эти поверхности фиксируются выпадением из нор­мальной последовательности тех или иных стратиграфических подразделений, присутствующих
там, где положительные движения не проявлялись. Если отложения выше и ниже поверхности,
фиксирующей перерыв в осадконакоплении, залегают с одинаковыми углами наклона (стратиграфическое несогласие), можно говорить о медленных положительных движениях, охвативших
большие площади. Если наблюдаются резко отличные углы наклона (угловое несогласие), то ранее накопившиеся осадки к моменту нового погружения и осадконакопления испытали складкообразование, могли быть нарушены разрывами (рис. 24). Глубина размыва подстилающей толщи и
продолжительность перерыва в осадконакоплении свидетельствуют об амплитудах

Рис. 24. Стратиграфическое (а) и угловое (б) несогласия Последовательность событий: а - накопление осадков нижней пачки, поднятие, размыв кровли нижней пачки, погружение, накопление осадков верхней пачки; б - накопление осадков нижних пачек, поднятие, складкообразование и перемещение блоков по разлому, размыв, накопление осадков вевхней пачки (заимствовано у Г.И.Немкова и др., 1986)

тектонических движений, приведших к не­согласию между толщами пород. Толщи пород, отделенные от подстилающих и по­крывающих отложений поверхностями уг­ловых несогласий, называются структур­ными этажами. Каждый структурный этаж отвечает естественному историко-тектоническому этапу развития территории, кото­рый начался трансгрессией и осадконакоплением во время отрицательных движений и завершился подъемом территории и складчатостью. Каждый структурный этаж характеризуется специфичными формами залегания слоев.

5) Структурный анализимеет важное значение при изучении горизонтальных движений,
так как позволяет качественно и количественно оценить величину горизонтальных движений во



 

Рис. 25. Слой, смятый при боковом сжатии д - длина крыла складки, ш - ширина складки, а -угол складки (заимствовано у Г.И.Немкова и др., 1986)

время деформации слоев. Если мысленно распрямить слой, смятый в складки, образовавшиеся при боковом сжатии, протяженность такого выпрямленного слоя будет соответствовать первона­чальной ширине прогиба до момента деформации слоя. Разность между суммой длины крыльев скла­док исуммой ширины тех же складок составит ве­личину горизонтального сжатия слоя (рис. 25). Пользуясь графическим способом или геометри­ческими формулами, можно оценить амплитуду го­ризонтальных движений, приведших к образова­нию складок. Например, по рис. 25 можно предста­вить, что, если средние углы складок равны 60°, горизонтальное сокращение поверхности было двукратным.

6) Палеомагнитный анализ.Способность горных пород намагничиваться во время своего
образования в соответствии с направлением геомагнитного поля и сохранять эту намагниченность
позволяет не только создать палеомагнитную геохронологическую шкалу, но и использовать дан­ные палеомагнитного анализа для выявления горизонтальных тектонических движений. Определив среднее направление намагниченности пород определенного возраста, взятых из какого-либо
пункта на поверхности Земли, можно рассчитать положение магнитного полюса того времени в

координатах. Исследуя породы в их стратиграфической последовательности, по координатам вычерчивается траек­тория относительного перемещения полюса за время, соот­ветствующее изученному интервалу стратиграфического разреза. Проделав такое же исследование по образцам, взя­тым из другого пункта, вычерчивается траектория переме­щения полюса относительно пункта за тот же период вре­мени.

Рис. 26. Траектория движения Северного полюса относительно Европы и Северной Америки за последние 400 млн. лет (заим­ствовано у Г.И.Немкова и др., 1986)

Если обе траектории совпадают по форме, то обе точ­ки сохранили постоянное положение относительно полю­сов. Если траектории не совпадают, то обе точки по-разно­му изменили свое положение относительно полюса. Так, например, траектории движения Северного полюса, рас­считанные для территории Северной Америки и для Евро­пы за последние 400 млн. лет, существенно отличны (рис. 26). Это позволяет сделать вывод о горизонтальных перемещениях континентов в указанное время.

7) Формационный анализявляется методом исследования строения и истории развития
земной коры на основе изучения пространственных взаимоотношений ассоциаций горных пород -
геологических формаций.

Геологическая формация представляет вещественную категорию, занимающуюопределенное положение в иерархии вещества земной коры: химический элемент- минерал - горная порода -геологическая формация - формационный комплекс- оболочказемной коры, -к Под формациями понимается совокупность фаций,которые образовались на более или менее значительном участке земной поверхности при определенных тектонических и климатических ус­ловиях и отличаются от других особенностями состава и строения. Отдельные фации могут быть образованы на различных участках земной поверхности. Однако их устойчивые и длительные со­четания, которые позволяют сгруппировать их в формации, возникают только в строго определен­ных тектонических и климатических условиях. По другому определению, геологической формацией можно называть закономерные ассоциации горных пород, связанные единством вещественного состава и строения, обусловленные общностью их происхождения (или сонахождения).

Термин "формация" был введен известным немецким геологом А.Г.Вернером еще в XVIII в. Долгое время до начала XX в. его употребляли в качестве стратиграфической категории, как и предложил автор. До сих пор в США для обозначения стратиграфических единиц употребляется термин "формация". В нашей стране формационный анализ нашел широкое применение в связи с тектоническим районированием и прогнозом полезных ископаемых. Заслуга в его развитии при­надлежит многим русским ученым, в частности Н.С.Шатскому, Н.П.Хераскову, В.Е.Хаину, В.И.Попову, Н.Б.Вассоевичу, Л.Б.Рухину и другим исследователям.

Различают три типа формаций: осадочные, магматические и метаморфические. При изучения формаций выделяют главные (обязательные) и второстепенные (необязательные) члены ассоциа­ции. Главные члены ассоциации характеризуют определенную формацию, т.е. устойчивую ассоци­ацию, повторяющуюся в пространстве и во времени. По названию главных членов ассоциации да­ется название формации. Набор второстепенных членов подвержен существенным изменениям. В зависимости от вещественного состава типы формаций делятся на группы. Например, среди оса­дочных формаций можно выделить группы глинисто-сланцевых, известняковых, сульфатно-гало­генных, кремнистых, мелкообломочно-кварцевых, мелкообломочных полимиктовых и др.; среди вулканогенных - группы базальтово-диабазовых (трапповых), липарито-дацитовых, андезитовых формаций и др.

Главными факторами, определяющими формирование устойчивых ассоциаций осадочных горных пород, являются тектонический режим и климат, а магматических и метаморфических по­род - тектонический режим и термодинамическая обстановка.

Основными признаками осадочных формаций являются: 1) набор слагающих их ассоциаций главных горных пород, которые совместно отвечают фациям или генетическим типам; 2) характер переслаивания этих пород в вертикальном разрезе; ритмичное строение; 3) форма тела формации и его мощность; 4) наличие в ней каких-то характерных аутигенных минералов, своеобразных горных пород или руд; 5) преобладающая окраска, в той или иной степени несущая генетическую информацию; 6) степень диагенетических или метаморфических изменений.

Названия осадочным и осадочно-вулканогенным формациям обычно даются по преобладающим литологическим компонентам (песчано-глинистая, известняковая, доломитовая, эвапоритовая) с одно­временным указанием физико-географической обстановки образования (морская, континентальная, лимническая), нередко за многими формациями закрепились названия по присутствию акцессорных минералов (глауконитовая) или полезных ископаемых (угленосная, бокситоносная).

Главными факторами, определяющими облик осадочных формаций, являются следующие: 1) характер тектонического режима в областях размыва и накопления; 2) климатические условия; 3) интенсивность вулканизма. От многократного сочетания перечисленных условий и быстрой из­менчивости в пространстве и во времени создается чередование генетических типов пород, входя­щих в состав формаций. От этих же факторов зависит и общее распределение формаций на зем­ной поверхности.

В зависимости от тектонического режима выделяются три класса формаций: платформенный, геосинклинальный, орогенный. Большинство осадочных формаций могут служить надежны­
ми индикаторами тектонического режима. Например, формации мергелисто-меловые, каолиновых
глин, кварцевых песчаников, глинисто-опоковая свидетельствуют о платформенном режиме осад-
конакопления, а осадочные флишевые, кремнисто-карбонатные, кремнисто-сланцевые, яшмовые
формации являются индикаторами геосинклинального режима. Широкое развитие осадочных гру-
бообломочных формаций указывает на орогенный режим.

Еще более определенное заключение о тектонических режимах можно сделать на основе ана­лиза магматических формаций, если иметь в виду, что ряд пород: основные - средние - кислые ~

 


щелочные соответствуют последовательности развития магматических извержений при смене гео­синклинального режима орогенным и далее платформенным.

Площади распространения определенных формаций контролируются тектоническими струк­турами, развитием которых обусловлено пространственное ограничение формаций. Поэтому, изу­чая закономерности распространения формаций в пространстве, мы тем самым устанавливаем размещение тектонических структур во время образования формаций. Эволюция тектонического режима приводит к последовательной смене в разрезе геологических формаций. Располагая дан­ными об условиях формирования комплексов горных пород, сменяющихся по вертикали, можно сделать вывод об изменении тектонического режима.

Так, например, если мощная толща флишевых формаций с характерными тонкими, законо­мерно ритмично переслаивающимися пластами песчаников, алевролитов и аргиллитов, перекрыта толщей грубообломочных морских и континентальных отложений - молассами, делается вывод, что геосинклинальные условия сменились орогенными. Этот вывод основан на существующих представлениях о тектонических условиях накопления флишевых и молассовых формаций.

Анализ формаций дает возможность классифицировать тектонические структуры, выделяя , их особые типы, например, типы прогибов. Повторяемость типичных формаций в пространствен­но разобщенных структурах позволяет наметить общую этапность в истории тектонического раз­вития структур, сравнить наборы формаций близких по типу структур разного возраста и т.д.

Особое направление в изучении и классификации осадочных формаций составило направле­ние, основанное на учете содержания в них промышленных концентраций определенных видов полезных ископаемых. На этом основании выделяются угленосные, соленосные, фосфоритонос-ные, бокситоносные, железорудные, латеритные, нефтеносные и целый ряд других формаций.

Последовательность при изучении и выделении формаций следующая. Вначале в разрезе производится выделение толщ пород, отличающихся по литологическому составу, разделенных четко выраженными поверхностями напластования, границами перерывов или размывов (стратиг­рафический перерыв и несогласия). Затем проводится изучение группы пород (ассоциации), вхо­дящих в состав выделенного естественного комплекса, т.е. парагенетический анализ. Одновре­менно определяются и изучаются цикличность строения формации или иные структурно-текстур­ные признаки. Далее выясняются фациальная природа каждого входящего в состав формации типа пород и их сочетание в разрезе, т.е. осуществляется фациальный анализ. На этом основании определяется генетический тип отложений, устанавливается физико-географическая (ландшафт­ная) обстановка формирования формации. В заключительной фазе формационного анализа опре­деляются климатический и тектонический режимы времени и места формирования формаций. Та­ким образом проводятся палеоклиматический и формационно-тектонический анализы.

Теоретическое значение изучения осадочных и осадочно-вулканогенных формаций состоит в возможности восстановления по ним древней тектонической, климатической и ландшафтной зо­нальности. Практическое значение формационного анализа обусловливается приуроченностью к определенным формациям соответствующих видов полезных ископаемых.


Глава 2

ГЕОХРОНОЛОГИЯ. ШКАЛА ГЕОЛОГИЧЕСКОГО ВРЕМЕНИ

Геохронология преследует цель восстановления строгой временной последовательности гео­логических событий, происходивших в прошлом, путем установления хронологических взаимоот­ношений между накопившимися слоями горных пород, в которых эти события оказались запечат­ленными.

Историческая геология, как и любая другая наука, изучающая историю развития живой и не­живой природы, невозможна без хронологии. Однако хронология - это еще далеко не история, а лишь механическое расположение событий во времени. В прошлом происходило великое множе­ство различных событий, и для того, чтобы ориентироваться среди них, необходимо не только ус­тановить формальные временные соотношения между ними, но и найти внутренние связи между событиями и явлениями прошлого, определить их пространственные взаимоотношения и относи­тельное значение. При этом выявляются естественные временные группировки, разграниченные событиями более высоких рангов, и тем самым намечаются последовательные этапы историчес­кого развития. В таком случае речь идет о естественной периодизации геологической истории.

– Конец работы –

Эта тема принадлежит разделу:

ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ

В М Подобина С А Родыгин ИСТОРИЧЕСКАЯ... МЕТОДЫ ВОССТАНОВЛЕНИЯ ПАЛЕОГЕОГРАФИЧЕСКИХ ОБСТАНОВОК УЧЕНИЕ О...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МЕТОДЫ ВОССТАНОВЛЕНИЯ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ПРОШЛОГО

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ
Томск - 2000 Учебное пособие

СТРАТИГРАФИЧЕСКИЙ МЕТОД
Историко-геологическое направление рассматривает развитие геологических событий во вре-мени и в пространстве. Изучение этих событий немыслимо без стратиграфических и геохроноло­гических исследовани

Непалеонтологические методы
Непалеонтологическими методами стратиграфии являются литологические, геофизические, в т.ч. палеомагнитный, общегеологические методы, а также ритмостратиграфия и климатостратиграфия.

УЧЕНИЕ О ФАЦИЯХ
  Одна из важных задач исторической геологии - восстановление физико-географических обстановок, существовавших в определенный этап геологического прошлого, и их изменений с те­чением

Основные группы фаций
Первая наиболее детальная и полная классификация морских и континентальных фаций по четырем соподчиненным категориям (фация - сервия - нимия - формация) была предложена Д.В.Наливкиным (1955). Се

Фации бассейнов ненормальной солености
Осолоненные и солоноватоводные (опресненные) бассейны часто возникают на окраинах континентов, где утрачивается либо затрудняется связь с океаном или происходит смешивание пресных вод с морскими. Э

Континентальные фации
Континентальные фации генетически очень разнообразны и в большой степени зависят от рельефа местности, тектонических движений, многих химических факторов и т.д. Особую роль играют климатические усл

МЕЖДУНАРОДНАЯ ГЕОХРОНОЛОГИЧЕСКАЯ ШКАЛА
Основные подразделения международной стратиграфической шкалы, на базе которой в даль­нейшем была создана геохронологическая шкала, были выделены в Западной Европе к середине XIX в. Все они вначале

Глобальная шкала четвертичной системы
 

ГАЛАКТИЧЕСКАЯ ХРОНОМЕТРИЧЕСКАЯ ШКАЛА
В основе хронометрической шкалы, в отличие от хроностратиграфической (геохронологичес­кой), лежит разделение времени на равные интервалы, в идеале кратные некоторым круглым зна­чениям, например, 10

ПЕРИОДИЧЕСКИЕ ГЕОЛОГИЧЕСКИЕ СОБЫТИЯ И ИХ ВЛИЯНИЕ НА ВЫМИРАНИЕ И ПОЯВЛЕНИЕ ОРГАНИЗМОВ
Земля - динамично, но отнюдь не хаотично развивающийся объект. Ученые заметили, что многие геологические процессы протекают с определенной периодичностью. По мнению Е.Е.Милановского (1995), существ

ГИПОТЕЗЫ О ПРОИСХОЖДЕНИИ ЗЕМЛИ
Земля - небольшая планета Солнечной системы (средний радиус 6371 км), третья от Солнца, одна из девяти планет, входящих в эту систему. История Земли тесно связана с происхождением и развит

ЛУННАЯ СТАДИЯ РАЗВИТИЯ ЗЕМЛИ
Планетезимали, образовавшие Землю, под влиянием столкновений друг с другом и гравита­ционных сил расплавлялись, сформировав горячее ядро. Температура в нем поддерживалась и возрастала благодаря рад

ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ КОНТИНЕНТАЛЬНОЙ КОРЫ
Орогенные области (складчатые пояса) и платформы представляют главнейшие элементы со­временной структуры континентов. Они сформировались в результате длительного геологического развития соответству

ОСОБЕННОСТИ СТРОЕНИЯ ОКЕАНИЧЕСКОЙ ЗЕМНОЙ КОРЫ
Длительное время считалось, что океаническая кора принципиально не отличается по строе­нию от континентальной: океаны (кроме Тихого) представляют собой временно опущенные по разломам блоки, где иде

ОСОБЕННОСТИ РАЗВИТИЯ ЗЕМЛИ В ДОКЕМБРИИ
Термин "докембрий" очень удобен тем, что охватывает весь период геологической истории Земли с тех пор, когда на ней начали происходить геологические процессы, и до начала кембрия. Этот от

АРХЕЙСКИЙ АКРОН (АРХЕЙСКАЯ АКРОТЁМА)- AR
  Архейский акрон продолжался свыше 1,5 млрд. лет, хотя точно длительность его неизвестна и нижняя граница не установлена. Она определяется условно возрастом наиболее древни

Общая характеристика
Возрастная граница между ранне- и позднеархейским зонами проводится на уровне 3.150 млн. лет. Самые древние образования иногда называют "катархей" (от греч. ката - внизу, термин Я.

Органический мир
О зарождении жизни и самых ранних этапах ее развития подробно говорилось в главе 5. По»-.видимому, уже ранее 3.500 млн. лет, в раннем архее, появились настоящие живые организмы -прокариоты (

Структуры земной коры и породообразование
Согласно схеме Л.И.Салопа (1982), в архейском акроне выделяются шесть диастрофизмов: готхобский второго порядка (-4000 млн. лет), саамский первого порядка (3750-3500 млн. лет), бе-лингвийский, сваз

Физико-географические условия
Особенности метаосадочных пород нижнего архея указывают на существование горячей гид­росферы. Изучение изотопного состава кремнистых пород, в частности отношений дейтерия к во­дороду и изотопов

Общая характеристика
Позднеархейский эон охватывает время 3.150-2.600 (по другим данным 2500) млн. лет. Образова­ния верхнеархейской эонотемы резко отличаются от нижнеархейской, знаменуя собой начало нового крупного эт

Органический мир
К позднему архею создались условия, более благоприятные для существования и размноже­ния организмов: снизилась температура воды, уменьшилась ее кислотность и химическая агрес­сивность. В верхнеархе

Структуры земной коры и породообразование
Во всех районах зеленокаменные породы верхнего архея развиты в виде узких, часто непра­вильных по форме участков, представляющих структуры геосинклинального типа, разделенные обширными полями глубо

Физико-географические условия
По изотопному составу кислорода и отношению дейтерия к водороду в гидроксиле кремния раз­личных пород верхнего архея температура воды составляла примерно от 90 до 65°С в конце зона. Атмосф

ПРОТЕРОЗОЙСКИЙ АКРОН (АКРОТЕМА)- PR
Термин "протерозойская группа" (греч. протерос - первичный, зоэ - жизнь) был предложен английским ученым А.Седжвиком в 1887 г. для обозначения всех докембрийских образований

Общая характеристика
Раннепротерозойский зон охватывает события от конца кеноранского (беломорскогоJ диаст-рофизма (2600 млн. лет) до конца позднекарельского (выборгского) диастрофизма (1600-1650 млн. лет). Этот отрезо

Органический мир
Вметаосадочных нижнепротерозойских образованиях часто встречаются микроскопические прокариоты и продукты их жизнедеятельности (микрофитолиты). Особенно много фитолитов в средней и

Структуры земной коры и породообразование
На протяжении раннекарельской эры выделяются три тектонических цикла (диастрофизма), связываемые с тремя интервалами подъема термального фронта, происходившими примерно че­рез 200 млн. лет. Два ран

Структуры земной коры и породообразование
Время формирования верхнекарельской эратемы - 1900-1650 млн. лет. Отрезок геологической истории с 1900 до 1600-1650 млн. лет, согласно действующей геохро­нологической шкале (табл. 1, цв. в

Физико-географические условия раннего протерозоя
Соотношение изотопов кислорода в кремнистых породах Австралии указывает на среднюю температуру мелководного моря в середине раннего протерозоя порядка 60°С. Широкое развитие карбонатных пород свиде

Общая характеристика
Позднепротерозойский эон продолжался с 1650 до 570 млн. лет. Большую его часть составля­ет рифей, ранг которого не совсем ясен, последние 80-100 млн. лет - венд, продолжительность ко­торого соответ

Органический мир
Важнейший рубеж в развитии органического мира совпадает с началом позднего протерозоя, когда повсеместно появились достоверные эукариоты - организмы, клетки которых имели обо­собленные ядра. Эукари

Структуры земной коры и породообразование
Вслед за позднекарельским этапом дробления земной коры, подъема термального фронта, мощными излияниями кислых лав, в раннем рифее начался интенсивный процесс формирования крупных платформ в граница

Условия осадконакопления
Терригенные породы: псефиты, псаммиты, глинистые породы; много красноцветов. Наблю­даются признаки мелководья. В позднем рифее - много медистых песчаников. Карбонатные породы: мощные мелко

Физико-географические условия
Судя по отношениям изотопов кислорода в породах надсерии Белт США, температура зем­ной поверхности 1300-1200 млн. лет назад была в пределах 40-50°С (в PR, t= 60°C). Понижение температуры ско

Общая характеристика
К венду относятся различные геологические образования, которые возникли после окончания рифея и до начала кембрийского периода (650-570 млн. лет). Отложения, относящиеся к венду, обозначаются или к

Органический мир
В венде начался третий важнейший этап развития органического мира докембрия- этап ста- ,#овления основных типов животного мира, и прежде всего многоклеточныд. Вендская флора и фау

Структуры земной коры и осадконакопление
Отложения венда известны на всех платформах, особенно на древних - Восточно-Европейс­кой и Сибирской. Миогеосинклинальные фации выделены во многих складчатых поясах. В эвгео-синклинальных областях

Физико-географические условия
Рубеж рифея и венда является началом эпохи материковых оледенений, которые привели к глобальной регрессии. Следы последующего значительного потепления также имеют планетарное распространение.

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ ДОКЕМБРИЯ
Распределение месторождений полезных ископаемых по времени образования весьма нерав­номерное. В раннем архее формируется немного месторождений полезных ископаемых. Так, с иенгрским комплексом связа

ПАЛЕОЗОЙСКАЯ ЭРА (ЭРАТЕМА)- PZ
Палеозойская эра начинает новый эон в истории Земли - фанерозой (время явной жизни), объединяющий палеозойскую, мезозойскую и кайнозойскую эры. Название "палеозойская серия" впервые было

Органический мир
Растительный мир представлен многочисленными и более разнообразными, чем в протеро­зое, водорослями. Характерны, как и ранее, находки микрофоссилий, называемых акритархами. В кембрии найде

Структуры земной коры и палеогеография
К началу кембрия многие районы земной коры оказались приподнятыми над уровнем моря. Существовали древние платформы и геосинклинальные пояса. Складчатые области (байкальской складчатости) - байкалид

История развития платформ
Восточно-Европейская (Русская) платформа Наиболее полные разрезы кембрия обнажаются на южном и северном берегах Финского за­лива (см. схему II, цв. вкл.). Скважинами кембрийская сис

Сибирская платформа
Прогибание Сибирской платформы было намного интенсивнее. За исключением щитов (Ана-барского и Алданского) вся платформа была покрыта кембрийским морем. Наиболее широко рас­пространены нижнекембрийс

Северо-Лмериканская платформа
Отложения кембрия представлены только средним и верхним отделами. Среднекембрийские отложения развиты на крайнем западе, а также юге и представлены песчаниками, алевролитами, аргиллитами и известня

Гондвана
Гондвана представляла собой материк, который подвергался процессам денудации. Только по окраинам отмечаются небольшие по размерам трансгрессии. Морские осадки кембрия выделяются в Южн

Атлантический геосинклинальный пояс
В строении Атлантического геосинклинального пояса к началу кембрия выделяются две обла­сти: 1) Северо-Атлантическая, или Грампианская, включающая восточное побережье Гренландии, Север

Полезные ископаемые
Кембрийский возраст имеют нефтеносные горизонты месторождений Прибалтики и Иркутс­кого бассейна. В основном к кембрию и ордовику приурочены продуктивные горизонты гигантс­кого месторождения

Органический мир
В отличие от кембрия в ордовике жизнь была значительно разнообразнее. В растительном мире господствовали водоросли, в том числе зеленые. Представитель зеленых водорослей (или цианобионтов?) - род

Структуры земной коры и палеогеография
В ордовике существовали те же платформы и геосинклинальные пояса, что и в конце кемб­рийского периода. В геосинклинальных прогибах продолжалось интенсивное погружение, что благоприятс

Восточно-Европейская (Русская) платформа
Отложения ордовика распространены там же, где и кембрийские, то есть в Прибалтике, При­днестровье и Московской синеклизе, и представлены всеми тремя отделами. Залегают они со стра­тиграфическим нес

Сибирская платформа
Ордовик занимает западную часть платформы, обнажается по окраинам Тунгусской синекли-зы и на юго-западе платформы. Разрезы различаются по литологии и палеонтологической харак­теристике. Наблюдается

Гондвана
В южно-американской части Гондваны в ордовике господствовали поднятия. Морские обло­мочные отложения встречаются на крайнем западе по границе с Восточно-Тихоокеанской геосин­клинальной областью. Пе

Северо-Атлантический геосинклинальный пояс
Грампианская геосинклинальная область. Грампианская геосинклиналь. Впределах этой геосинклинали накапливались мощные толщи осадочных и вулканогенных по­род. Разрез ордовика Уэл

Урало-Монгольский геосинклинальный пояс
Алтае-Саянская геосинклинальная область. Салаирский цикл тектогенеза, проявившийся в этой области в среднем кембрии, стабилизировал ее не полностью. Геосинклинальные условия в ордовике восст

Средиземноморский геосинклинальный пояс
В Европейской геосинклинальной области отложения ордовика распространены шире кемб­рийских. Они известны на севере Европы, где представлены морскими песчаниками, глинистыми сланцами с прослоями изв

Полезные ископаемые
В ордовике известны продуктивные горизонты Мидконтинента США (штаты Канзас и Окла­хома), которые дают треть годовой добычи нефти. В Алжирской Сахаре в кембрии и ордовике от- кр

Органический мир
В силурийском периоде продолжалось дальнейшее усложнение и совершенствование органи­ческого мира, особенно животного. Из растений в морях широко распространены водоросли, а при­брежные участки в по

Структуры земной коры и палеогеография
Силурийский период - заключительный этап каледонской эпохи тектогенеза. С середины и до конца силура во многих геосинклинальных областях неоднократно происходили мощные складкообразовательные проце

Восточно-Европейская платформа
Обнажения силурийских отложений известны в Прибалтике и в Приднестровье. Это суще-ственно карбонатные фации с разнообразной фауной, представляющие полный разрез силура, мощности которого увеличиваю

Сибирская платформа
Силурийские отложения распространены на западной половине платформы и в бассейне р.Вилюй. Обнажаются по долинам рек на юге и северо-западе платформы. Опорный разрез силу­ра известен по р.Мойеро. Зд

Северо-Американская платформа
Эта платформа в начале силура испытала кратковременное поднятие в результате проявления таконской фазы складчатости в Аппалачской геосинклинали. Регрессия сменилась трансгрессией с

Гондвана
Южные материки в силуре по-прежнему стоят выше уровня моря, и силурийские осадки не­значительны, но там, где они имеются (по периферии Гондваны), представлены терригенными об­разованиями.

История развития геосинклинальных поясов Северо-Атлантический геосинклинальный пояс
Грампианская геосинклинальная область. Грампианская геосинклиналь. Раз­рез силура Уэльса - стратотипической местности, где была выделена силурийская система, можно увидеть на схеме III, цв.

Полезные ископаемые
Залежи каменной соли, промышленные месторождения нефти и газа известны на Северо-Американской (Канадской) и Сибирской платформах. В силуре образовались месторождения ооли­товых

Органический мир
Органический мир девонского периода был богат и разнообразен. Значительного прогресса достигла наземная растительность. Начало девонского периода характеризовалось широким рас­пространением "п

История развития платформ
Северо-Атлантическая платформа (Лавренция) Эта суперплатформа объединяет Северо-Американскую платформу, каледониды Грампианс­кой герсинклинали и Восточно-Европейскую (Русс

История развития геосинклинальных поясов
Врезультате прошедшей каледонской складчатости перестала существовать Грампианская геосинклинальная область, каледониды сократили площадь других геосинклиналей, разделили геосинкли

Средиземноморский геосинклинальный пояс
Этот пояс испытывал в девоне значительное интенсивное опускание. В центральной части Западной Европы оставался срединный массив - Франко-Чешский или Молданубское поднятие (глыба). Название происход

Тихоокеанский геосинклинальный пояс
В Западно-Тихоокеанской геосинклинальной области в девоне формировались три типа раз­резов: эвгеосинклинальный, миогеосинклинальный и характерный для срединных массивов. В эвгеосинклинальн

Полезные ископаемые
Несмотря на бедность наземной растительности, развитие ее обусловило образование в де­вонском периоде первых в истории Земли промышленных залежей каменного угля. Они известны в России в Кузн

Органический мир
В каменноугольном периоде широко развивается наземный растительный мир. Он представ­лен различными группами споровых растений: членистостебельными, плауновидными и папорот­никами (рис. 55, 56, цв.

Структуры земной коры и палеогеография
В карбоне в пределах современных континентов продолжали существовать Лавренция, Си­бирская и Китайская платформы и суперплатформа Гондвана. Между ними располагались Аппа-лачская геосинклиналь, Сред

Средиземноморский геосинклинальный пояс
Разрез карбона западно-европейских герцинид был изучен ранее, чем в других регионах, и поэтому стал эталонным при разработке стратиграфической схемы каменноугольной системы. Динант (турне, визе) пр

Тихоокеанский геосинклинальный пояс
В Западно-Тихоокеанской геосинклинальной области в карбоне выделяются те же три типа разрезов, что и в девоне. Эвгеосинклинальный тип разреза характерен для внутренней части гео­синклинали,

Полезные ископаемые
Главная особенность каменноугольного периода - обширное угленакопление, которое проис­ходило как в краевых и межгорных прогибах герцинид, так и на платформах. Угли карбона состав­ляют почти

Органический мир
В пермском периоде органический мир приобрел своеобразные черты, хотя в самом начале периода он был во многом сходен с каменноугольным. С середины пермского периода характер наземной флоры

Структуры земной коры и палеогеография
В пермском периоде завершилась герцинская складчатость. Её последние фазы привели к от­миранию геосинклинального режима в оставшихся частях Урало-Монгольского пояса и Аппалачс-кой геосинклин

История развития платформ
Лавразия (Ангарида) Восточная Европа. Классической областью развития пермской системы в Лавразии являют? ся восточная часть Восточно-Европейской (Русс

Гондвана
Гондвана в пермском периоде увеличилась в размерах благодаря присоединению к ней герци-нид Южной Африки и Восточной Австралии. На Гондване продолжалось формирование континентальной гондван

Средиземноморский геосинклинальный пояс
В результате завершения герцинской складчатости пояс значительно сократился в размерах. Начиная с перми, его иногда называют геосинклинальной областью Тетис. На севере европейской части Тетиса, при

Тихоокеанский геосинклинальный пояс
Вовнешней зоне Западно-Тихоокеанской геосинклинальной области в пермском периоде про­должалось формирование МОЩНЫХ терригенных отложений, восточнее сменяющихся глинами, а по

Полезные ископаемые
Для пермского периода наиболее характерны угольные месторождения, на долю которых приходится около четверти мировых запасов. Это Печорский и Таймырский бассейны, верхние го­ризонты Минусинск

Структуры земной коры и палеогеография
В триасе существовали две суперплатформы: Лавразия и Гондвана и разделявшие их Тихоо­кеанский и значительно сократившийся после герцинской складчатости Средиземноморский (Те-тис) геосинклинальные п

Лавразия
Стратотипической областью развития триаса является Германская впадина (см. схему IX, цв. вкл.). Здесь нижний триас - пестрый песчаник - представлен красными и фиолетовыми песчани­ками, койгломерата

Органический мир
В юрском периоде архаичные формы палеозоя прекратили свое существование и органичес­кий мир принял типично мезозойский вид. В растительном мире господствовали различные груя-пы голосеменных: хвойны

Структуры земной коры и палеогеография
В юре продолжают существовать две крупные платформы: Лавразия и Гондвана и разделяю­щие их геосинклинальные пояса - Средиземноморский и Тихоокеанский. Юрский период по сравнению с триасовым называю

Историяразвития платформ; Лавразия
Осадконакопление в юре происходило не только на древних докембрийских платформах, но и в отдельных районах, снивелированных к этому времени герцинских горных сооружений, фор­мируя платформенный чех

Гондвана
В юрском периоде происходит распад Гондваны. Морские отложения занимают обширные территории в пределах Гондваны. Значительно расширяется "Мозамбикский рукав". Глубоковод­ным бурением уста

История развития геосинклинальных поясов Средиземноморский геосинклинальный пояс
В юре в пределах Средиземноморского геосинклинального пояса, значительно сократившего­ся после герцинской складчатости, обособляются две геосинклинальные области: Альпийско-Ги-малайская (Южная Евро

Тихоокеанский геосинклинальный пояс
На северо-западе Тихоокеанского геосинклинального пояса в юре, как и в триасе, существо­вали два геосинклинальных прогиба - Яно-Колымский и Анюйско-Чукотский, разделенные Омо-лоно-Колымским срединн

Полезные ископаемые
Преобладание влажного и теплого климата в течение большей части юры способствовало об­разованию бокситов а углей. Юрские бокситы известны на Урале, в Тургае, Средней Азии, на Ени­сейском кря

Органический мир
Меловой период завершает мезозойскую эру, и поэтому его органический мир несет все чер­ты, характерные для переходного этапа. Наиболее значительные изменения претерпевает расти­тельный мир суши. С

Структурыземной коры и палеогеография
По-прежнему существовала северная платформа Лавразия, усложненная к этому времени ря­дом опусканий. Более существенные погружения, сопровождаемые разломами, проявились на Гондване, на территории со

Евразия
Этот континент включал древние эпибайкальские платформы: Восточно-Европейскую, Си­бирскую и Китайскую, присоединенные к ним области каледонской и герцинской складчатости. Геологическая история этих

Северная Америка
Море мелового периода занимало обширную территорию к востоку от современных Скалис­тых гор, достигая края Канадского щита. Море наступало двумя встречными языками: с юга - из области Мексиканского

Части бывшей Гондваны
№ В раннем мелу все южные платформы, за исключением Австралии, сохранили приподнятое положение. Море было лишь на восточном побережье Африки, частично на Мадагаскаре, занима- ло больш

История развития геосинклинальных поясов
Средиземноморский геосинклинальный пояс В меловом периоде в пределах этого пояса выделяются три геосинклинальных области: Аль-пийско-Гималайская (Южная Европа, побережье Северной Аф

Полезные ископаемые
С континентальными отложениями мела связано около 21% мировых запасов углей. Это Лен­ский, Зырянский бассейны в России, месторождения запада Северной Америки и др. Залежи бок­ситов из

Структуры земной коры и палеогеография
В начале палеогена в Северном полушарии выделяются два крупных материка, соединявшихся в районе Берингова пролива: Евразияи Северная Америка.В Южном полушарии суще

История развития платформ
Большая часть Евразии составляла континент. Палеогеновое море проникло на запад и юг Европы и запад Азии. В пределах юга европейской части России палеогеновые отложения представлены терриг

Полезные ископаемые
В палеогене были сформированы месторождения бокситов приэкваториальных районов: Ав­стралии (п-ов Йорк), Гвинеи, Ямайки, Суринама, Гайаны, заключающие 95% запасов алюминие­вого сырья зарубежн

Органический мир
Неогеновые растения и животные по систематическому составу близки к современным, но географическое распределение их было несколько другим. Растительный мир по родовому и видовому составу и

Структуры земной коры и палеогеография
В начале неогена в северном полушарии существовали две огромные по размерам и сложные по структуре платформы: Евразияи Северо-Американская.Особенностью неогеновой

Полезные ископаемые
Наибольшее значение среди полезных ископаемых, связанных с неогеновыми отложениями, имеют нефть и газ. Около одной трети всех подсчитанных запасов нефти и газа - неогенового возраста.

Органический мир
Животный и растительный мир четвертичного периода близок к современному. Изменения, которые происходили в составе и расселении животных и растений, были связаны с изменениями природной среды, вызва

Природные условия
При характеристике природных условий четвертичного периода важное значение имеют два фактора. Это периодическое наступление ледниковых эпох и сменяющих их межледниковий. В течение четвертичного пер

Полезные ископаемые
Полезные ископаемые, которые приурочены к четвертичным отложениям, можно разделить на несколько генетических групп. Это разнообразные россыпи, руды осадочного происхождения, нерудные полезные ископ

Эпохи великих вымираний
В главе 2 уже говорилось о галактических циклах разной продолжительности, которым под­чинены различные события земной истории, в том числе вымирание и возникновение организмов. Эта точка зрения раз

ТЕКТОНИЧЕСКАЯ ПЕРИОДИЗАЦИЯ
Орогеническому этапу отвечает понятие о складчатости (диастрофизме, тектогенезе). Тер­мин "складчатость" не совсем удачен, поскольку собственно образование складок здесь процесс вт

И НАПРАВЛЕННОСТЬ РАЗВИТИЯ ЗЕМНОЙ КОРЫ.
ВАЖНЕЙШИЕ ГЕОТЕКТОНИЧЕСКИЕ ГИПОТЕЗЫ.................................236 ТЕКТОНИЧЕСКАЯ ПЕРИОДИЗАЦИЯ.........................................................................

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги