рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Кольцевая минерагения Земли

Кольцевая минерагения Земли - раздел Геология, Павлинов В.Н. Структурная геология. Издательство Недра, 1979 К Настоящему Времени Установлено, Что Не Менее 70—75% Всех Известных На Земле...

К настоящему времени установлено, что не менее 70—75% всех известных на Земле месторождений полезных ископаемых пространственно связаны с кольцевыми структурами. Такая связь имеет тесные генетические взаимоотношения.

Таким образом, изучение кольцевых структур может и должно в какой-то степени способствовать решению важнейшей геологической задачи — анализу общих закономерностей размещения месторождений полезных ископаемых на земном шаре. Связи между месторождениями и кольцевыми структурами в настоящее время интенсивно изучаются советскими и зарубежными геологами. Установлено, что определенным генетическим типам кольцевых структур соответствует только свой набор полезных ископаемых. Однако не всегда удается достаточно уверенно распознать минерагеническое “лицо” того или иного структурного типа, поскольку кольцевые структуры во многих случаях усложняют друг друга. В течение геологической истории происходит наложение более молодых структур на древние — их своеобразная интерференция. Какие же элементы кольцевых структур и какие геологические условия следует считать благоприятными для повышенной минерализации?

В, настоящее время известный ленинградский исследователь В. В. Соловьев описал несколько типовых позиций, при которых могут создаваться максимально благоприятные условия для локализации рудного вещества в пределах кольцевой структуры. Рудное вещество концентрируется:

1) во внешних или периферических контурах кольцевых структур, особенно в условиях, когда они оконтурены кольцевыми разломами или представляют собой плутоны разных размеров;

2) за контурами кольцевых структур (но вблизи них), если они окаймляются складчатыми поясами;

3) в зонах пересечения кольцевых структур с пересекающими их или с сопряженными с ними разломами (или линеаментами) различных рангов и размеров;

4) в областях интерференции (сгущения) кольцевых - структур разного размера и различного генезиса;

5) в апикальных (т. е. наиболее приближенных к поверхности Земли) частях плутонов, отраженных в виде кольцевых структур.

Минерагеиическое значение нуклеаров.Нуклеары играют важную роль в распределении месторождении полезных ископаемых на Земле. М. 3. Глуховскии, подробно изучавший эту проблему, считает, что высокая минерагеническая роль нуклеаров определяется особенностями их строения: высокой подвижностью и проницаемостью их внешних частей; наличием кольцевых структур-сателлитов, радиальных разломов и узлов тектонической интерпретации участков пересечения радиальных разломов в центральных частях нуклеаров, а также дуговых и радиальных линеаментов; характерными чертами глубинного строения (увеличенной по сравнению с интернуклеарными областями мощностью земной коры); длительностью и унаследованностью развития нуклеаров от раннего докембрия дофанерозоя.

Размещение крупнейших минерагенических провинций и поясов, заключающих стратиморфные месторождения меди, свинца, цинка и других металлов, по данным М. 3. Глуховского и В. М. Моралева, приурочено к внешним частям нуклеаров. Например, во внешней зоне Северо-Американского нуклеара располагается рудный пояс Скалистых гор со стратиморфным месторождением полиметаллических руд Салливан и медоносная провинция озера Верхнего. В краевой части Колорадского нуклеара расположена известная провинция металлоносных (уран, ванадий, медь и др.) осадочных пород плато Колорадо.

Многие крупные рудные пояса Африки также приурочены к периферическим частям Центрально- и Южно-Африканского нуклеаров. Аналогичная картина выявляется при изучении нуклеаров Индийской и Австрийской платформ.

М. 3. Глуховскии считает, что имеются все признаки приуроченности кимберлитовых полей к нуклеарам. Это можно расценивать как весьма благоприятный поисковый фактор. Объясняется данное обстоятельство тем, что нуклеар формируется в пределах долгоживущих зон высокой проницаемасти земной коры, когда создаются благоприятные условия для формирования докембрийских алмазоносных эклогитов.

Нуклеары — объекты чрезвычайно интересные в минерагеническом отношении для поисков месторождений алмазов, золота, свинца, меди, железа и многих других очень важных полезных ископаемых.

Минерагеническое значение астроблем. Как уже сообщалось, взрывной механизм обусловливает мгновенное и резкое изменение давления и температуры горных пород, слагающих мишень, что приводит к появлению новообразованных пород, интересных в мииерагеническом отношении. В этой связи поиск и обнаружение астроблем могут сыграть существенную роль в приумножении металлических и неметаллических полезных ископаемых.

Образованию крупного месторождения меди и никеля Садбери в Канаде также связывают с падением крупного метеорита. Его размеры около 59 километров. Зона ударных деформаций (признаки ударного метаморфизма, конус разрушения и др.) обширнее — до 74 километров. Внедрение никеленосных норитов произошло вскоре после кратерообразования, причем интрузия как бы “использовала” поверхность дна кратера в качестве ослабленной зоны. Относительно большая роль микрогранитов в составе интрузии объясняется определенной ролью кислого импактного расплава, который смешался с поднявшейся из глубины по системе трещин основной магмой. Это явление обусловило ликвацию сульфидов. Образование никеленосной интрузии следует относить к инъекционному комплексу. Время заложения астроблемы Садбери относится к раннему протерозою (1840 миллионов лет назад); в кайнозое она вновь стала ареной нового удара (37 миллионов лет назад). Вопросы генезиса структуры Садбери дискутируются в литературе с давних пор, однако большинство исследователей рассматривает ее как астроблему. Древние астроблемы типа Садбери необходимо проанализировать с позиции выявления их никеленосности.

Минерагеническое значение магматогенных кольцевых структур. Кольцевые структуры данного типа, как известно, делятся на две генетические группы: плутоническую и вулканическую и играют важную минерагеническую роль: с их образованием связаны важнейшие руды, содержащие уран, бериллий, алюминий, серебро, редкие элементы.

Плутонические кольцевые структуры сложены интрузивными породами различного состава: гранитоидами, нефелиновыми сиенитами, карбонатитами и т. д. Примеры тесной связи металлических руд с интрузивными массивами - плутонами - общеизвестны. Наиболее распространены среди них плутонические кольцевые структуры, сложенные гранитоидами - породами, наиболее широко распространенными среди интрузивных образований.

Кольцевые массивы гранитов достаточно подробно изучены И. В. Давиденко в Африке. На этом континенте кольцевые интрузии плато Джое (Нигерия) могут служить эталонами гранитных месторождений тантала, ниобия, олова. Массивы Абу-Даббаб, Нувейби, Игла (Египет), Абу-Рушейд (Саудовская Аравия) можно считать эталонами месторождений тантала, ниобия, олова, бериллия; их аналоги известны в различных странах. В Аппалачах с кольцевыми интрузиями связаны медноцинковые (Гаспе, Батерст), полиметаллические (Багинс) и другие месторождения. Они образованы в интрузивных комплексах преимущественно герцинского или более молодого возраста. Особенно интересны в минерагеническом отношении зоны пересечения плутонических кольцевых структур с линеаментами.

Установлено, что кольцевые структуры диаметром свыше 150 километров не содержат крупных месторождений металлов.

Кольцевые массивы нефелиновых сиенитов могут служить источником добычи апатита, а также тантала, ниобия, стронция, цезия, титана, ванадия, калия, циркония, алюминиевого и другого сырья: например, лопаритовые руды Ловозерского массива, сынныритовые породы Сынныра (СССР).

Кольцевые массивы щелочно-ультраосновного состава (карбонатиты) известны на всех континентах, но особенно многочисленны в СССР, Канаде, Бразилии, Индии и в ряде стран Африки (Ангола, Заир, Танзания, Кения, Малави, ЮАР, Мозамбик). Хорошо изученный Ковдорский карбонатитовый массив (СССР) содержит промышленное количество магнетита, бадделеита, апатита, флогопита, вермикулита, кальцита, диопсида. Массив Сокли (Финляндия) отличается повышенным содержанием урана. На территории Канады изучены ниобиеносные карбонатитовые массивы Джеймс-Бей, Сент-Оноре (Шикутими), Ока.

По данным известного московского специалиста И. В. Давиденко, свыше 20 продуктивных карбонатитовых массивов известны в Бразилии. Площади массивов варьируют от трех квадратных километров (Морру-ду-Евгеньо) до 65 квадратных километров (Якупи-ранга). Уникальный по качеству ниобиевого сырья массив Араша содержит свыше 500 миллионов тонн апатитовых руд и 463 миллиона тонн баритовых. Площадь массива всего 16 квадратных километров, возраст - около 90 миллионов лет. Несколько моложе (70 миллионов лет) массив Тапира (33 квадратных километра), содержащий крупные запасы ниобия, апатита, титана, редких земель. Интерес представляют массивы с высокими концентрациями никеля (Санта-Фе и Морру-ду-Евгеньо), бокситов (Лажес) и флюорита (Мату-Прету).

Большой интерес вызывают минерагенические особенности плутонических кольцевых структур основного состава. Среди них наиболее замечательный природный объект — кольцевой интру-зивный комплекс Бушвельд в ЮАР площадью около 65 000 квадратных километров. Слагающие его нориты, лавы и пирокласты, фель-зиты, граниты, щелочные породы характеризуются комплексной ми-нерагенией: промышленное значение имеют концентрации меди, никеля, кобальта, железа, титана, ванадия, платины, золота, молибдена, олова, флюорита (добывается 19 компонентов). Массив Бушвельд структурно влияет на размещение рудных месторождений во вмещающих древних породах трансва-альской системы (месторождения платины, золота, алмазоносных кимберлитов и т. д). Крайне интересным считает И. В. Давиденко факт подобии южного контакта бушвельдского комплекса северному контакту золотоносной структуры Витватерсранда, которая тоже имеет кольцеобразную форму.

Современные металлогеничес-кие исследования континентальных вулканических поясов невозможны без детального анализа кольцевых структур. Н. И. Филатова с коллегами доказали, что в Охотско-Чукот-ском вулканическом поясе крупные магматогенные кольцевые структуры в основном определяют металлогеническую специфику этого региона. В качестве благоприятных рудоконтролирующих факторов здесь рассматриваются зоны пересечения концентрических или дуговых разломов с радиальными линеаментами либо участки сгущения мелких кольцевых структур. Субвулканическими и вулканоплутоническими кольцевыми структурами разных континентов связаны имеющие важное практическое значение медно-пор-фировые руды. Известные месторождения меди Южной Америки связывают именно с этим генетическим классом кольцевых структур. Здесь в Андийском поясе и Карибском регионе месторождения ассоциируют с поясами извест-ково-щелочных магматических пород, для которых доказано глубинное подкоровое происхождение. Во многих случаях месторождения приурочены к субвулканическим кольцевым телам кварцевых монцонитов, дацитовых порфиритов и, видимо, генетически с ними связаны. Данные по большинству медно-порфиро-вых месторождений как штоквер-кового типа, так и типа брекчиевых трубок показывают, что все они сформировались в условиях растяжения. Такие условия должны были реализоваться вслед за тектоническими перестройками. Многие месторождения меди, связанные с субвулканическими кольцевыми телами Андийского пояса, расположены вдоль Западного побережья Южной Америки.

В Северных и Южных Кордильерах в зонах пересечения линеамен-тов с кольцевыми структурами вулканоплутонического происхождения также формируются многочисленные месторождения меди. Так, с поясом Нью-Мексико связано месторождение Западная Чиуа-уа; к этим же зонам приурочены месторождения серебра.

Изучение магматогенных кольцевых структур представляет интерес для прогнозирования полезных ископаемых в двух аспектах. С одной стороны, тенденцию к образованию массивов правильной округлой формы обнаруживают преимущественно интрузии как кислого, так и ультраосновного ряда, но, как правило, с повышенной щелочностью, а следовательно, и со специфической металлогенией. Вероятно, это можно объяснить формированием магмы с повышенной щелочностью на больших глубинах, по сравнению с магмой, так сказать, нормального состава. Если на геологической карте в пределах какого-нибудь района мы видим интрузии, как круглые по форме в плане, так и неправильных очертаний, хотя и близкие по возрасту и составу, можно ожидать, что они будут отличаться по метал-логеническим характеристикам.

С другой стороны, часто кольцевые формы дешифрируются на космических снимках в тех районах, где на поверхности нет выходов магматических пород, например в Северном Верхоянье, но и они служат индикатором невскрытых интрузивных массивов, залегающих на сравнительно небольших глубинах. Это было подтверждено геофизическими данными, так как на гравиметрических и магнитометрических картах инт-рузивные тела обнаруживают характерные аномалии. При полевых исследованиях удалось обнаружить признаки оруденения, в данном случае олова. По геохимическим данным, здесь вскрыты на поверхности самые верхние части рудных тел, уходящих на глубину. Такой прогноз, основанный первоначально на изучении кольцевых структур по космическим снимкам, важен для поисков оруденения на глубине.

Особое значение изучение кольцевых структур приобрело при прогнозировании и поисках низкотемпературного оруденения, связанного с вулканотектоническими структурами.

Особая роль принадлежит кольцевым структурам при поисковых работах на нефть и газ. Как известно, основные месторождения этих полезных ископаемых главным образом связаны со структурами, расположенными в чехлах молодых и древних платформ, краевых прогибов. В этой связи приобретают важнейшее значение кольцевые структуры тектоногенного происхождения - округлые впадины и поднятия. Согласно данным советского геолога В. А. Буша, в первую очередь объектами поиска являются локальные структурные ловушки углеводородов. Многие из них представляют собой округлые или овальные брахиантиклинали или солянокупольные структуры, сопровождающиеся системами разрывных нарушений и пликативных дислокаций центрального типа и проявляющиеся на космических снимкал в виде кольцевых структур мини - и микроструктурного классов. Другие локальные структуры в виде дешифрируемых кольцевых объектов не проявляются. Зоны нефтегазонакопления также часто неблюдаются на космических снимках в виде кольцевых образований. Особенно это относится к изометричным платформенным сводам типа Астраханского, Татарского, Каракумского, Ставропольского (СССР), Озарк, Цинциннати (США) и др. Однако внутренняя и радиальная зональность месторождений внутри этих сводовых зон нефтегазонакопления обычно не обнаруживается. Исключение - классический свод на западном побережье Мексиканского залива, представляющий собой гигантский атолл Голд-Лайн, сопровождаемый правильной овальной цепью нефтяных место рождений в рифовых массивах. Он выглядит на космических снимках в виде овальной кольцевой структуры.

Известны примеры и более крупных нефтегазоносных структур - нефтегазоносных областей или бассейнов, проявленных кольцевыми объектами на космических снимках. Такие мегаструктуры обычно характеризуются концентрическим планом расположения нефтегазовых месторождений. Это прежде всего Прикаспийский нефтегазоносный бассейн, окруженный по периферии “бортовым уступом”, к погружаемому крылу которого приурочена цепь газовых, газоконденсатных и нефтяных месторождений в обширных поднятиях подсолевого палеозоя. В центральной же части бассейна располагаются нефтяные месторождения в надсолевом мезозойском комплексе, связанные с солянокупольными структурами.

ВЫВОДЫ:

1. Кольцевые структуры — непременные и важнейшие элементы структуры континентальной земной коры. Их расположение отражает латеральные, т. е. горизонтальные вещественные неоднородности разных глубинных уровней тела планеты.

2. Смена различных стадий развития континентальной земной коры в ходе геологической истории сопровождается сменой количественно преобладающих генетических типов кольцевых структур - от предполагаемых ксеногенных и нуклеарных к метаморфогенным, затем к магматогенным и, наконец, к мантийноочаговым.

3. Кольцевые образования больших (макро) размеров являются образованием сложного генезиса и длительного совместного развития метаморфических, магматических и тектонических процессов. Кольцевые структуры меньших размеров (мезо- и мини-) обычно формируются под влиянием лишь одного ведущего геологического фактора, а самые мелкие (микро-) кольцевые образования моногенны, т. е. порождены одноактными геологическими явлениями.

4. Кольцевые структуры различного генезиса приурочены к областям распространения разных типов строения или разных глубинных срезов земной коры: к древним щитам - метаморфогенные, складчатым системам - плутонические, вулканическим поясам - вулканические, плитам древних и молодых платформ - тектоногенные.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Павлинов В.Н. Структурная геология. Издательство Недра, 1979

Список литературы для самостоятельного изучения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Кольцевая минерагения Земли

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

I.II.Связь структурной геологии со смежными дисциплинами
Структурная геология опирается на обширные данные других отраслей геологических наук: минералогии, петрографии, исторической геологии, палеонтологии, геоморфологии и литологии.

I.III. История развития структурной геологии
Осенью 1700 года Петр I учредил «Приказ рудокопных дел». К середине 18 века открыты богатейшие месторождения Fe, Cu на Урале, Ag, Pb на Алтае, Забайкалье, каменного угля в Донбассе. Истори

II.II. Типы геологических карт
Различают: 1) геологические карты; 2) карты четвертичных отложений; 3) геоморфологические карты; 4) литологические карты

Крупномасштабные
5. Детальные. 1.Обзорные карты М 1:1000000 и мельче. Изображены общие черты геологического строения отдельных регионов, государств, континентов. Составляю

III.I. Слой, слоистость и строение слоистых толщ
  Слоем называют однородный первично обособленный осадок (горная порода), ограниченный поверхностями наслоения. Пласт – тоже самое только эт

III.II. Элементы слоя
1. Верхняя поверхность – кровля 2. Нижняя поверхность – подошва 3. Истинная мощность – расстояние от подошвы до кровли 4. Видимая мощность (по склону)/ 5. Неполн

III.III. Определение (измерение) мощности
  m = a×sina а – видимая мощность a - угол падения пласта m – истинная мощность

III.IV. Формы слоистости (форма и мощность слоев)
1.Параллельная слоистость наблюдается, когда поверхность наслоения плоски и параллельны друг другу. Она характерна для глубоководных отложений. 2.Волнистая слоисто

III.V.Генетические типы слоистости
1.Градационная слоистость наблюдается, когда процесс осадконакопления происходил в водной среде. Характерна смена в вертикальном разрезе слоев с уменьшением зерен терригенного мате

III.VI. Строение поверхностей наслоения
  Особенности строения помогают выяснить происхождение и условия залегания осадочных толщ. На поверхности наслоения можно видеть элементы микрорельефа: 1.Ископаемые з

III.VII. Взаимоотношение слоистых толщ
  По характеру связи между слоями и отношению их к более древнему основанию выделяются три различных типа залегания осадочных горных пород: 1.Трансгрессивное

III.VIII. Образование слоистых толщ
  Существуют два фактора образования слоистости: 1. Смена времен года (сезон, чередование летних и зимних осадков) 2. Колебательные движения земной коры (главная

III.IX. Понятие о стратиграфических и петрографических горизонтах
  Стратиграфическим горизонтом называется одновозрастная группа слоев различного состава, связанных постепенными переходами в горизонтальном направлении (рис. ,ГДИК,

III.X. Несогласия
Несогласия бывают двух видов: 1.Стратиграфическое возникает в результате перерыва в осадконакоплении 2.Тектоническое

III.XI. Строение поверхностей несогласия
Поверхность стратиграфического несогласия может иметь различные формы. Она бывает сильно сглаженной или возможны и резко выраженные неровности древнего рельефа. Накопление осадков на неровной повер

IV.I. Признаки горизонтального залегания слоев
Горизонтальное залегание слоев характеризуется общим горизонтальным или близким к нему расположением поверхности наслоения. Идеальных горизонтальных поверхностей наслоения в земной коре не встречае

Измерение мощности слоя
Истинная мощность (Н) при горизонтальном залегании определяется как разница между отметками кровли и подошвы слоя. При расчлененном рельефе истинная мощность вычисл

V.I. Элементы залегания
При наклоном залегании для определения положения поверхностей наслоения в пространстве пользуются следующими элементами залегания: линия простирания, линия падения

V.III. Работа горного компаса
Определяются линии азимута простирания и азимута падения. Для замера азимута простирания к линии простирания компас прикладывают длинной стороной, причем как одной длинной стороной, так и другой (р

Наклонам
При определении элементов залегания слоя по буровым скважинам можно воспользоваться слоистостью пород в керне, для чего нужно иметь ориентированный керн. В других случаях при определении элементов

V.V. Определение истинной мощности
    Ри

V.VII. Зависимость ширины и формы выхода слоя на поверхности от его истинной мощности, угла падения и формы рельефа
Чем больше истинная мощность слоя, тем при прочих равных условиях шире его выход на поверхность. Ширина выхода слоя на поверхность зависит от формы рельефа; увеличивается при совпадении угла наклон

V.VIII.Пластовые треугольники
На карте с изображением выхода пласта на поверхность легко подметить одну характерную особенность в форме изгиба — линия выхода пласта на поверхность изогнута так, что образует сравнительно резко в

VI. I. Складки и их элементы
Выделяют две основные разновидности складок: 1.Антиклинальные – изгиб, в центральной части которого находятся более древние горные породы (рис. , а) 2.Син

VI.II. Элементы складки
1.Замок или свод – место перегиба слоев (1-2, 3-4, 5-6, 7-8) 2.Крылья складки – часть примыкающая к своду (замку), (2-3, 4-5. 6-7) 3.Угол

Угол наклона смыкающего крыла
5)     а

VII.IV. Нетектонические трещины
Образование обусловлено изменениями внутренних свойств пород под влиянием сил, проявляющихся при экзогенных процессах на поверхности Земли. 1.Первичные трещинывозникают в

VII.V. Тектонические трещины
Они появляются в горных породах под действием тектонических сил, вызываемых в земной коре эндогенными процессами. Тектонические трещины отличаются выдержанностью по простиранию и п

VIII.II. Сбросы
Сбросы – нарушения, в которых поверхность разрыва наклонена в сторону расположения опущенных пород. В сбросах различают следующие элементы:   Рис. . Элементы

Строение смесителя
Сместители не всегда одинаковы. Когда смеситель изогнут, вдоль него возникают полости, которые впоследствии могут быть заполнены рудным или жильным веществом.  

Определение амплитуды смещения сбросов
Строится разрез по сместителю, чтобы на опущенном и поднятом крыле был пересечен один и тот же сло

VIII.III. Взбросы
Взбросами называются нарушения, в которых поверхность разрыва наклонена в сторону расположения приподнятых пород.   Рис. . Элементы взброса  

VIII.IV. Системы сбросов и взбросов
Блоки горных пород, разделенные сбросами и взбросами, получили название горстов и грабенов. Грабен ( в переводе с нем. «ров») – линейная

VIII.V. Сдвиги.
Сдвиги – разрывы, смещение по которым происходит в горизонтальном направлении – по простиранию смесителя. Элементы сдвига: крылья,

VIII.VI. Раздвиги
Раздвиги – разрывы, в которых перемещение крыльев происходит под прямым углом к поверхности отрыва (по В.В. Белоусову). Амплитуда раздвига измеряется перпендикуляр

VIII.VII. Надвиги
Надвиги – разрывы взбросового строения, возникающие одновременно со складчатостью или накладывающиеся на складчатые структуры. Надвиги возникают в сильно сжатых наклонных или опрок

VIII.VIII. Тектонические покровы (шарьяжи)
Это горизонтальный, пологий или волнистый крупный надвиг с перемещением до многих десятков километров, который также называется шарьяжем.  

IX.I. Подводно - оползневые нарушения
Первичные нарушения залегания осадочных толщ образуются еще во время отложения осадка. Они выражаются в виде разнообразных смятий, спирально закрученных линз и комьев мелких опроки

IX.II. Рифы (биогермы)
  Картирование и изучение ископаемых рифов – сложная задача. Д.В. Наливкин указывает следующие характерные особенности рифовых массивов: 1.Преобладание или большое развитие м

IX.III. Погребенные элювиальные и делювиальные образования
Делювиальные и элювиальные образования нередко сохраняются среди осадочных пород, они разрушаются последующими процессами и переходят в аллювиальные и иные отложения. Однако в некоторых случаях в р

Щитового типа
Вулканы центрального типа. Вокруг жерла развивается четко выраженный, пологий либо крутой слоистый конус - стратовулкан. Склоны вулкана имеют крут

Континентальные (наземные)
В каждой из них могут быть выделены: покровные, эксплозивные, экстузивные (жерловые), субвулканические и

X.III. Особенности подводных и наземных вулканогенных образований
  Условия накопления вулканогенных толщ в наземных и подводных средах редко различимы. В наземных условиях лавовые штоки покрывают поверхность земли, неровности рельефа, часто это реч

X.IV. Текстурные особенности эффузивных пород
  Текстуры эффузивных пород сложны и отражают скорость остывания, условия накопления лавовых потоков и характер их движения, химический состав и газовый режим магмы.

X.V. Определение возраста эффузивных пород
  Сложная и трудная задача, которая решается с той или иной степенью достоверности, следующими методами: 1.Пустоты от разложившихся организмов и их скелетов, захваченных лава

X.VI. Изображение эффузивных пород на геологических картах
  Эффузивные породы на геологических картах изображаются также, как и осадочные, т.е. расчленяются по возрасту и составу. Для них также измеряются мощность слоев и их элементы залеган

Апофизы (языки)
Ареал-плутоны – огромные по площади массивы гранитов и гранитогнейсов, не имеющих определенных очертаний, в поперечнике достигающих сотни километров. Распространены в архее и проте

XI.II. Эндо- и экзоконтакты
Внедряющаяся магма изменяет и перекристаллизовывает (пары, газы и температура) вмещающие породы. Степень изменения постепенно убывает при удалении от контакта интрузии. Ширина зон контактов изменен

XI.III.Внутренняя структура интрузивных массивов
Изучение процессов остывания и затвердевания магмы (это распределение и ориентировка в породе отдельных минералов, текстурных особенностей и трещин) важны для размещения МПИ в пределах интрузий. Вс

XI.IV. Определение возраста интрузий
  1.Определение абсолютного возраста производится по продуктам распада радиоактивных элементов, содержащихся в минералах магматических горных пород. Чаще используются методы Pb-изотоп

XII.I. Определение исходного состава метаморфических пород
Для решения данного вопроса особое значение имеют сохранившиеся в них первичные минералы, структуры и текстуры. О магматическом происхождении исходных пород говорят реликты магмати

XII.II. Стратиграфическое расчленение метаморфических толщ
Докембрийские (доС) делятся на архейские (AR) и протерозойские (PR). Архейские – это все образования древнее 2600 млн лет. Протерозой подразделяется на: 1) PR1(нижний, ранний): 2600-1600

XII.III. Внутренняя структура метаморфических пород
В метаморфических толщах при перекристаллизации возникает сланцеватость; здесь в них различают полосчатые и линейные текстуры. Полосчатые возникают при перекристал

XII.IV. Структуры дислокационного метаморфизма
Они возникают в областях, имеющих складчатое строение, и образуют пояса (зоны) интенсивной складчатости, трещиноватости, дробления, милонитизации и разрывов. Катаклазиты –

КОЛЬЦЕВЫЕ СТРУКТУРЫ
Интерес к кольцевым структурам возник в середине 70-х годов нашего столетия в связи с широким развитием исследований Земли из космоса. Космическое зондирование поверхности Земли и наземные (подспут

Сложное.
С точки зрения теоретической геологии следует напомнить о феноменальных результатах, полученных при изучении наиболее древних кольцевых структур Земли, нуклеаров. В фанерозое произошел раскол этих

Кольцевые по форме — разные по природе
Кольцевые структуры на космических снимках выглядят круглыми или овальными, полностью или фрагментарно замкнутыми фотоаномалиями. Кольцевые структуры состоят из ядра и внешнего кон

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги