Роль инженерной геологии в строительстве объектов

 

Этап строитель­ства Вид работ Организация Исполнитель
Инвестиции Заказчик Заказчик
Техническое задание на инженерно-геологические изыскания Проектная Инженер-строитель
Инженерно-геологиче­ские изыскания Изыскательская Инженер-геолог
Проектирование Проектная Инженер-строитель при участии инжене­ра-геолога
Строительство Строительная То же
Эксплуатация объекта Заказчик »
Реконструкция или лик­видация Строительная »

В последнее время значительное место в строительной практике занимает вопрос реконструкции, перепрофилирования и реставрации зданий и сооружений, как правило, в пределах существующей городской застройки. Это накладывает особую ответственность на инженеров-геологов, которые должны оценить степень изменений в геологической среде за период эксплуатации зданий и сооружений и выработать рекомендации по дальнейшим проектным решениям в связи с изменившейся геологической обстановкой.

Цель инженерно-геологических исследований — получить не­обходимые для проектирования объекта инженерно-геологиче­ские материалы.

Задача исследований — изучение геологического строения, геоморфологии, гидрогеологических условий, природных геологи­ческих и инженерно-геологических процессов, свойств горных пород и прогноз их изменений при строительстве и эксплуата­ции различных сооружений.

Ведение инженерно-геологических изысканий регламентирует­ся основным нормативным документом в строительстве «Строите­льными нормами и правилами» СНиП 11.02—96 «Инженерные изыскания для строительства» и комплексом сводов правил.* Дан-

С 01.07.03 г. принят Закон РФ «О техническом регулировании», переводя­щий указанные документы в разряд рекомендательных, что, однако, не меняет их значимость для организации инженерных изысканий для строительства.


ные документы определяют порядок, состав, объем и виды выпол­няемых работ изысканий для различных этапов проектирования, строительства и эксплуатации объектов и различных геологиче­ских обстановках, а также состав документации по результатам изысканий, порядок их предоставления и приемки, а также ответ­ственность исполнителей и заказчиков (проектировщиков).

Состав исследований определяется программой, согласован­ной с проектной организацией. В состав работ входят: сбор, изу­чение и анализ имеющихся геологических материалов по району строительства; инженерно-геологическая и гидрогеологическая съемка; буровые и горно-проходческие разведочные работы; гео­физические исследования; опытные полевые работы; стационар­ные наблюдения; лабораторные исследования грунтов и подзем­ных вод; камеральная обработка и составление отчета.

Во всех случаях исследования должны начинаться со сбора имеющихся материалов о природных условиях района (геологиче­ском строении, гидрогеологических условиях, климате, гидроло­гии, почвенном покрове, топографии). Эту работу выполняют в подготовительный период до начала полевых работ; изучают ма­териалы, хранящиеся в геологических фондах и других организа­циях, опубликованные работы, собирают данные об опыте строи­тельства и эксплуатации аналогичных сооружений в местных природных условиях. Тщательный сбор и анализ имеющихся ма­териалов, дополненный в ряде случаев рекогносцировочным об­следованием района, позволяет целенаправленно составить про­грамму исследований и значительно сократить их объем.

После проведения необходимых организационно-хозяйствен­ных мероприятий изыскательский отряд или партия выезжает на место будущего строительства и приступает к полевым работам (съемка, буровые, геофизические и другие работы).

Окончательная обработка полевых материалов и результатов лабораторных анализов производится в стационарных условиях в течение камерального периода. Камеральная обработка материа­лов завершается составлением инженерно-геологического и гидрогеологического отчетов.

Объем выполняемых инженерно-геологических исследований бывает различен. Это связано со стадией проектирования (пред­варительные или детальные исследования), геологической изу­ченностью района (изученный, малоизученный, неизученный), сложностью геологического строения (сложные складки, горизон­тальное залегание слоев и т. д.), особенностями свойств грунтов (грунты, требующие и не требующие специальных работ), конст­руктивными особенностями сооружений и их капитальностью.

Основной объем инженерно-геологических работ приходится на исследования, проводимые в период до проектирования. На этом


этапе инженерно-геологические исследования обеспечивают полу­чение необходимых данных, связанных с геологическими условия­ми местности, со свойствами грунтов и получением инженерных выводов. Геологическое изучение местности позволяет выявить лучший участок для строительства, влияние различных процессов на сооружение и влияние самого сооружения на природную обста­новку. Изучение грунтов позволяет определить их свойства, ре­шить вопрос о необходимости улучшения их свойств и составить представление о наличии в данном районе тех или иных строите­льных материалов. Важное место занимают инженерные выводы. При этом устанавливается глубина заложения фундаментов и ве­личина допускаемых давлений на грунт, прогнозируются устойчи­вость сооружения, величины ожидаемых осадков и т. д.

В период строительства при проходке котлованов производят сверку наблюдаемых геологических и гидрогеологических данных с геологическими материалами, полученными в период инженер­но-геологических исследований до проектирования. При наличии расхождений назначают дополнительные инженерно-геологиче­ские работы для подтверждения правильности выполненного проекта или внесения в него необходимых исправлений.

При эксплуатации зданий и сооружений во многих случаях це­лесообразны работы, связанные с подтверждением прогноза устойчивости объектов. Так, проводят наблюдения за характером и величиной осадок, режимом грунтовых вод и рек, размывом берегов, устойчивостью склонов и т. д. К этому периоду относят также работы, получившие название инженерно-геологической экспертизы. Задачей таких исследований является установление причин возникновения деформаций зданий и сооружений и ре­шение вопросов по их устранению.

Инженерно-геологические работы обычно выполняют в три этапа:

1) подготовительный; 2) полевой; 3) камеральный.

Подготовительные работы включают изучение района по ар­хивным, фондовым и литературным материалам. Осуществляется подготовка к полевым работам.

В полевой период производят все инженерно-геологические работы, предусмотренные проектом для данного участка:

• инженерно-геологическую съемку;

• разведочные (буровые и горно-проходческие) работы и гео­
физические исследования;

• опытные полевые исследования грунтов;

• изучение подземных вод;

• анализ опыта местного строительства и т. д.


В течение камерального периода производят обработку поле­вых материалов и результатов лабораторных анализов, составляют инженерно-геологический отчет с соответствующими графиче­скими приложениями в виде карт, разрезов и т. д.

Инженерно-геологический отчет является итогом инженер­но-геологический изысканий. Отчет передается проектной орга­низации, и на его основе выполняется необходимая проектная документация для строительства. В общем виде отчет состоит из введения, общей и специальной частей, заключения и приложе­ний. Во введении указывают место проведения изыскательских работ и время года, исполнителей и цель работ. В общей части, в ее отдельных главах дается описание:

• рельефа, климата, растительности, населения;

• геологической обстановки с приложением геологических карт
и разрезов;

• карт строительных материалов, которые необходимы для вы­
полнения строительных работ.

В специальных главах большое внимание уделяется фунтам и подземным водам. Грунты являются основным объектом исследо­ваний, поэтому указываются: какие грунты, их свойства, выра­женные в цифрах, что необходимо для определения расчетных характеристик, пригодность грунтов для строительства объекта.

Подземные воды оцениваются в двух направлениях: как источ­ники водоснабжения при строительстве и эксплуатации объекта и как они могут помешать строительству. В этих случаях даются ре­комендации по строительному водопонижению и устройству дре­нажей на период эксплуатации объекта.

В заключительной части отчета дается общая инженерно-гео­логическая оценка участка по пригодности для данного строите­льства, указываются наиболее приемлемые пути освоения терри­тории, заостряется внимание на вопросах охраны окружающей среды.

Отчет обязательно должен иметь приложение, в котором дает­ся различный графический материал (карты, разрезы, колонки скважин и др.), а также таблицы свойств грунтов, химических анализов воды, каталог геологических выработок и др.

Инженерно-геологический отчет должен давать ответы на все вопросы, которые стоят перед строителем, но семь из этих отве­тов являются главными. Это фактически семь основных требова­ний к инженерно-геологическим изысканиям. К ним относятся: 1) оценка общих условий территории; 2) обеспечение геологиче­скими данными для выбора типа основания и конструкций фун­дамента; 3) определение характера воздействия на грунты дина­мических нагрузок; 4) возможное влияние на устойчивость


объекта инженерно-геологических процессов; 5) влияние на объ­ект подземных вод; 6) состав и свойства грунтов как несущих оснований и особенности производства земляных работ; 7) про­гноз влияния объекта на природную среду, в частности, по за­грязнению земли, атмосферы и гидросферы.

Инженерно-геологические заключения. В практике инженер­но-геологических исследований очень часто вместо больших отче­тов приходится составлять инженерно-геологические заключения. Выделяются три вида заключений: 1) по условиям строительства объекта; 2) о причинах деформаций зданий и сооружений и 3) эк­спертиза. В первом случае заключение носит характер сокращен­ного инженерно-геологического отчета. Такое заключение может быть выполнено для строительства отдельного здания.

Заключение о причинах деформаций зданий и сооружений могут иметь различное содержание и объем. В их основу кладут­ся материалы ранее проведенных исследований, осмотр местнос­ти, сооружения. При необходимости дополнительно выполняется небольшой объем инженерно-геологических исследований. За­ключение должно вскрыть причины деформаций и наметить пути их устранения.

Инженерно-геологическая экспертиза проводится, главным образом, по проектам крупных сооружений. Основой для экспер­тизы является наличие спорных и разноречивых оценок природ­ных условий (в процессе изысканий) или аварий сооружений (в процессе их эксплуатации).

Экспертиза силами квалифицированных специалистов уста­навливает:

• правильность приемов исследований;

• достаточность объемов работ;

• правомерность выводов и рекомендаций;

• причины аварий и т. д.

По объему работы экспертиза бывает кратковременная и длите­льная. В первом случае вопрос решается практически сразу. Выво­ды излагаются в виде заключения. Во втором случае экспертиза кроме изучения имеющихся материалов требует выполнения спе­циальных работ по определенной программе с указанием сроков. По окончании работ выводы могут быть изложены в виде заклю­чения или даже небольшого инженерно-геологического отчета.

Экспертиза должна давать ответ на поставленные вопросы, содержать необходимые конкретные рекомендации, обоснования и доказательства целесообразности предлагаемых инженерно-тех­нических мероприятий.

Инженерно-геологическая съемкапредставляет собой комплек­сное изучение геологии, гидрогеологии, геоморфологии и других естественно-исторических условий района строительства. Эта ра-438


бота дает возможность оценить территорию со строительной точ­ки зрения.

Масштаб инженерно-геологической съемки определяется дета­льностью инженерно-геологических исследований и колеблется от 1:200 000 до 1:10 000 и крупнее. Основой для проведения съемки служит геологическая карта данной территории.

Геоморфологические исследования уточняют характер рельефа, его возраст и происхождение. При геологических работах опреде­ляют условия залегания пород, их мощность, возраст, тектониче­ские особенности, степень выветрелости и т. д. Для этой цели изу­чают естественные обнажения, представляющие собой выходы на поверхность слоев горных пород на склонах гор, оврагов, речных долин. Для каждого слоя записывают наименование породы, окра­ску, состав, примеси, измеряют видимую мощность и элементы за­легания. На карте указываются местонахождения обнажений. Наи­более характерные для данного района обнажения зарисовывают и фотографируют.

Районы, где наблюдается большое количество обнажений, на­зывают открытыми, при отсутствии их — закрытыми. В закрытых районах геологическое строение изучают с помощью разведочных выработок (буровых скважин, шурфов и т. д.). Выработки доку­ментируются. Одновременно из них отбирают пробы образцов пород для лабораторных исследований.

При инженерно-геологической съемке изучают гидрогеологи­ческие условия для выяснения обводненности пород, глубины за­легания подземных вод, их режима и химического состава; выяв­ляют геологические явления и процессы (обвалы, осыпи, оползни, карст и т. д.), которые могут негативно отразиться на устойчивости и нормальной эксплуатации зданий и сооружений, изучают опыт строительства на данной территории, определяют физико-механические свойства пород полевыми методами, а так­же в специальных полевых лабораториях.

В процессе инженерно-геологической съемки производят по­иски месторождений естественных строительных материалов.

На основе полученных данных составляют инженерно-геоло­гическую карту района строительства. Это дает возможность про­извести инженерно-геологическое районирование территории и выделить участки, наиболее пригодные под строительство круп­ных объектов (промышленные предприятия, жилые микрорайоны и т. д.).

Аэрокосмические методы. Для ускорения сроков съемочных ра­бот и повышения их качества используют аэрометоды, которые особенно эффективны в районах, труднодоступных для наземно­го изучения (заболоченные низменности, пустыни и т. д.). Широ­кое распространение в современных условиях получили методы


космической съемки, для которых разработана специальная аппа­ратура, методики дешифрирования снимков, позволяющие полу­чать высокоточную и достоверную геологическую информацию.

Буровые и горнопроходческие разведочные работы являются су­щественной частью инженерно-геологических и гидрогеологиче­ских полевых исследований. С помощью буровых скважин и гор­ных выработок (шурфов, штолен и др.) (рис. 175) выясняют геологическое строение и гидрогеологические условия строитель­ной площадки на необходимую глубину, отбирают пробы грунтов и подземных вод, проводят опытные работы и стационарные на­блюдения.

К главнейшим разведочным выработкам относят расчистки, канавы, штольни, шурфы и буровые скважины. При инженер­но-геологических работах наиболее часто используют шурфы и буровые скважины.

Расчистки, канавы и штольни относят к горизонтальным вы­работкам. Их целесообразно применять на участках, сложенных крутопадающими слоями. При слабонаклонном и горизонталь­ном залегании слоев следует проходить шурфы и буровые сква­жины.

Расчистки — выработки, применяемые для снятия слоя рых­лого делювия или элювия с наклонных поверхностей естествен­ных обнажений горных пород.

Канавы (траншеи) — узкие (до 0,8 м) и неглубокие (до 2 м) выработки, выполняемые вручную или с помощью техники с це­лью обнажения коренных пород, лежащих под наносами.

Штольни — подземные горизонтальные выработки, закладыва­емые на склонах рельефа и вскрывающие толщи горных пород в глубине массива. Стены штольни, как правило, крепятся, если их проходят в нескальных породах.

Шурфы — колодцеобразные вертикальные выработки прямо­угольного (или квадратного) сечения. Шурф круглого сечения



Буровая скважина

 

Шурф    
  —■—  
------- -"1 _——-—- ^== .—-—■ —.— _-—- —-" _—-—-

Рис. 175. Разведочные выработки:

а — горизонтальные (штольня, ка­нава); 6— вертикальные (шурф, буровая скважина); 1 — делювиа­льные отложения; 2 — коренные породы



называют «дудкой». Проходку дудок легче механизировать, но по прямоугольным шурфам проще и точнее определить положение слоев в пространстве. Шурфы помогают детально изучать геоло­гическое строение участка, производить отбор любых по размеру образцов с сохранением их структуры и природной влажности. Недостатком является высокая стоимость и трудоемкость работ по отрывке шурфов, особенно в водонасыщенных породах. Сле­дует отметить, что за последнее время появились специальные шурфокопательные машины, позволяющие проходить шурфы круглого сечения. Размер шурфов в плане зависит от их предпо­лагаемой глубины. Чаще всего это 1x1 м; 1 х 1,5 м; 1,5 х 1,5 м и т. д. Диаметр дудок не превышает 1 м. Обычно глубина шурфа бывает 2—3 м, максимально до 4—5 м.

По мере проходки шурфа непрерывно ведут геологическую до­кументацию — записывают данные о вскрываемых породах, усло­виях их залегания, появлении грунтовых вод; производят отбор образцов. По всем четырем стенкам и дну делают зарисовку и со­ставляют развертку шурфа (рис. 176). Это позволяет более точно определить мощность слоев и элементы их залегания в пространстве.

По окончании разведочных работ шурфы тщательно засыпа­ют, грунт утрамбовывают, а поверхность земли выравнивают.

Буровые скважины представляют собой круглые вертикальные или наклонные выработки малого диаметра, выполняемые специ­альным буровым инструментом. В буровых скважинах различают устье, стенки и забой (рис. 177).

Бурение является одним из главнейших видов разведочных ра­бот, применяется в основном для исследования горизонтальных или пологопадающих пластов. С помощью бурения выясняют со­став, свойства, состояние грунтов, условия их залегания. Вся эта



Рис.176. «Развертка» шурфа: 1 стенки; 2 —дно




Рис. 177. Буровая скважина: 1 устье; 2—стенки; 3— забой


работа основывается на исследовании образцов пород, которые непрерывно извлекаются из скважины по мере ее углубления в процессе бурения. В зависимости от способа бурения и состава пород образцы могут быть ненарушенной или нарушенной струк­туры. Образцы ненарушенной структуры получили название керна.

К преимуществам бурения относят: скорость выполнения скважин, возможность достижения больших глубин, высокую ме­ханизацию производства работ, мобильность буровых установок. На рис. 178 показана буровая установка, смонтированная на ав­томобиле. Бурение имеет свои недостатки: малый диаметр сква­жин не позволяет производить непосредственный осмотр стенок, размер образцов ограничивается диаметром скважины, по одной скважине нельзя определить элементы залегания слоев.

Диаметр скважин, используемых в практике инженерно-геоло­гических исследований, обычно находится в пределах 100—150 мм. При отборе образцов на лабораторные испытания скважины сле­дует бурить диаметром не менее 100 мм. Глубина скважин опреде­ляется задачами строительства и может составлять десятки метров; при гидротехническом строительстве достигает сотен метров, при поисках нефти и газа — нескольких километров.

При инженерно-геологических исследованиях применяют та­кие виды бурения, которые позволяют получать образцы пород.