Объем гидросферы и интенсивность водообмена

 

Составляющие Объем всей воды, Объем пресных вод, Интенсивность водо-
гидросферы тыс. км' (%) тыс.км' обмена, годы
Мировой океан 1 370 000 (94)
Подземные воды*) 60 000 (4,12)
Ледники 24 000 (1,65) 24 000
Озера
Почвенная влага
Пары атмосферы 0,027
Речные воды 1,2 1,2 0,032
Вода в живых орга- 1,12 1,12
низмах      

'•Активному водообмену и использованию могут быть подвергнуты всеголишь 4000тыс. км3 подземных вод, расположенных на небольших глубинах.

Температура воды в океане меняется не только в зависимости от широты местности (близость к полюсам или экватору), но и от глубины океана. Наибольшей изменчивостью температур отли­чается поверхностный слой до глубины 150 м. Самая высокая температура воды в верхнем слое отмечена в Персидском заливе (+35,6 °С), а наиболее низкая — в Северном Ледовитом океане (-2,8 °С).

Химический состав гидросферы весьма разнообразен: от весь­ма пресных до очень соленых вод, типа рассолов.

Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и некоторых озер, а также минерализован-


ные подземные воды. Общий объем пресной воды на Земле равен 28,25 млн км3, что составляет всего лишь около 2 % общего объе­ма гидросферы, при этом наибольшая часть пресных вод сосредо­точена в материковых льдах Антарктиды, Гренландии, полярных островов и высокогорных областей. Это вода в настоящее время малодоступна для практического использования человеком.

В Мировом океане содержится 1,4 • 102 диоксида углерода (СО2), что почти в 60 раз больше, чем в атмосфере; кислорода в океане растворено 8 • 1018 г или почти в 150 раз меньше, чем в ат­мосфере. Ежегодно реки сносят в океаны около 2,53 • 1016 г терри-генного материала с суши, из них почти 2,25 • 1016 г приходится на взвесь, остальное — растворимые и органические вещества.

Соленость (средняя) морской воды равна 3,5 % (35 г/л). В морской воде кроме хлоридов, сульфатов и карбонатов содержат­ся также йод, фтор, фосфор, рубидий, цезий, золото и другие элементы. В воде растворено 0,48 • 1023 г солей.

Глубоководные исследования, проведенные в последние годы, позволили установить наличие горизонтальных и вертикальных течений, существование форм жизни во всей толще воды. Орга­нический мир моря разделяется на бентос, планктон, нектон и др. К бентосу относятся организмы, обитающие на грунте и в грунте морских и континентальных водоемов. Планктон — сово­купность организмов, населяющих толщу воды, не способных противостоять переносу течением. Нектон — активно плавающие, например рыбы, и другие морские животные.

В настоящее время серьезным становится вопрос о дефиците пресной воды, что является одной из составляющих развивающе­гося глобального экологического кризиса. Дело в том, что пре­сная вода необходима не только для утилитарных нужд человека (питья, приготовления пищи, умывания и т. п.), но и для боль­шинства промышленных процессов, не говоря уже о том, что только пресная вода пригодна для сельскохозяйственного произ­водства — агротехники и животноводства, так как подавляющее большинство растений и животных сосредоточено на суше и для осуществления своей жизнедеятельности они используют исклю­чительно пресную воду. Рост населения Земли (уже сейчас на планете более 6 млрд человек) и связанное с этим активное раз­витие промышленности и сельскохозяйственного производства привели к тому, что ежегодно человеком потребляется 3,5 тыс. км3 пресной воды, причем безвозвратные потери составляют 150 км3. Та часть гидросферы, которая пригодна для водоснабже­ния, составляет 4,2 км3, это всего лишь 0,3 % объема гидросфе­ры. В России достаточно большие запасы пресной воды (около 150 тыс. рек, 200 тыс. озер, множество водохранилищ и прудов,


значительные объемы подземных вод), однако распределение этих запасов по территории страны далеко неравномерно.

Гидросфера играет важную роль в проявлении многих геоло­гических процессов, особенно в поверхностной зоне земной ко­ры. С одной стороны, под воздействием гидросферы происходит интенсивное разрушение горных пород и их перемещение, пере­отложение, с другой — гидросфера выступает как мощный сози­дательный фактор, являясь по существу бассейном для накопле­ния в ее пределах значительных толщ осадков разного состава.

Биосферанаходится в постоянном взаимодействии с литосфе­рой, гидросферой и атмосферой, что существенно сказывается на составе и строении литосферы.

В целом под биосферой в настоящее время понимают область распространения живого вещества (живые организмы известных науке форм); это сложноорганизованная оболочка, связанная био­химическими (и геохимическими) циклами миграции вещества, энергии и информации. Академик В. И. Вернадский в понятие биосферы включает все структуры Земли, генетически связанные с живым веществом; прошлой или современной деятельностью жи­вых организмов. Большая часть геологической истории Земли свя­зана с деятельностью живых организмов, особенно в поверхност­ной части земной коры, например, это весьма мощные осадочные толщи органогенных горных пород — известняков, диатомитов и др. Область распространения биосферы ограничивается в атмосфе­ре озоновым слоем (примерно 18—50 км над поверхностью плане­ты), выше которого известные на Земле формы жизни невозмож­ны без специальных средств защиты, как это осуществляется при космических полетах за пределы атмосферы и на другие планеты. В недра Земли до последнего времени биосфера распространялась до глубины Марианской впадины в 11 022 м, однако при бурении Кольской сверхглубокой скважины достигнута глубина более 12 км, а это означает, что на данную глубину осуществлено про­никновение живого вещества.

Внутреннее строение Земли, по современным представлени­ям, состоит из ядра, мантии и литосферы. Границы между ними достаточно условны, вследствие взаимопроникновения как по площади, так и по глубине (см. рис. 1).

Земное ядросостоит из внешнего (жидкого) и внутреннего (твердого) ядра. Радиус внутреннего ядра (так называемый слой С) примерно равен 1200—1250 км, переходный слой (Р) между внутренним и внешним ядром имеет мощность около 300—400 км, а радиус внешнего ядра равен 3450—3500 км (соответственно глубина 2870—2920 км). Плотность вещества во внешнем ядре с глубиной возрастает с 9,5 до 12,3 г/см3. В центральной части


внутреннего ядра плотность вещества достигает почти 14 г/см3. Все это показывает, что масса земного ядра составляет до 32 % всей массы Земли, в то время как объем примерно 16 % объема Земли. Современные специалисты считают, что земное ядро поч­ти на 90 % представляет собой железо с примесью кислорода, се­ры, углерода и водорода, причем внутреннее ядро имеет, по со­временным представлениям, железо-никелевый состав, что полностью отвечает составу ряда исследованных метеоритов.

Мантия Землипредставляет собой силикатную оболочку меж­ду ядром и подошвой литосферы. Масса мантии составляет 67,8 % общей массы Земли (О.Г. Сорохтин, 1994). Геофизически­ми исследованиями установлено, что мантия, в свою очередь, может быть подразделена (см. рис. 1) на верхнюю мантию (слой Д до глубины 400 км), переходный слой Голицына (слой С на глуби­не от 400 до 1000 км) и нижнюю мантию (слой В с подошвой на глубине примерно 2900 км). Под океанами в верхней мантии вы­деляется слой, в котором мантийное вещество находится в час­тично расплавленном состоянии. Весьма важным элементом в строении мантии является зона, подстилающая подошву лито­сферы. Физически она представляет собой поверхность перехода сверху вниз от охлажденных жестких пород к частично расплав­ленному мантийному веществу, находящемуся в пластическом со­стоянии и составляющему астеносферу.

По современным представлениям, мантия имеет ультраоснов­ной состав (пиролита, как смеси 75 % перидотита и 25 % толери-тового базальта или лерцолита), в связи с чем ее часто называют перидотитовой, или «каменной», оболочкой. Содержание радиоак­тивных элементов в мантии весьма низко. Так, в среднем 10~8 % V; 10~7 % ТЪ, 10~6 % 40К. Мантия в настоящее время оценивается как источник сейсмических и вулканических явлений, горообра­зовательных процессов, а также зона реализации магматизма.

Земная корапредставляет собой верхний слой Земли, который имеет нижнюю границу, или подошву, по сейсмическим данным, по слою Мохоровичича, где отмечено скачкообразное увеличение ско­ростей распространения упругих (сейсмических) волн до 8,2 км/с.

Для инженера-геолога земная кора является основным объек­том исследований, именно на ее поверхности и в ее недрах возво­дятся инженерные сооружения, т. е. осуществляется строительная деятельность. В частности, для решения многих практических за­дач важным является выяснение процессов формирования повер­хности земной коры, истории этого формирования.

В целом поверхность земной коры формируется под воздейст­вием направленных противоположно друг другу процессов: 20


• эндогенных, включающих в себя тектонические и магматиче­
ские процессы, которые ведут к вертикальным перемещениям в
земной коре — поднятиям и опусканиям, т. е. создают «неровно­
сти» рельефа;

• экзогенных, вызывающих денудацию (выполаживание, вы­
равнивание) рельефа за счет выветривания, эрозии различных ви­
дов и гравитационных сил;

• седиментационных (осадконакопление), как «выполняющих»
осадками все созданные при эндогенезе неровности.

В настоящее время выделяются два типа земной коры: «база­льтовая» океаническая и «гранитная» континентальная.

Океаническая кора достаточно проста по составу и представ­ляет собой некое трехслойное формирование. Верхний слой, мощность которого колеблется от 0,5 км в срединной части оке­ана до 15 км у глубоководных дельт рек и материковых склонов, где накапливается практически весь терригенный материал, в то время как в других зонах океана осадочный материал представ­лен карбонатными осадками и бескарбонатными красными глу­боководными глинами. Второй слой сложен подушечными лава­ми базальтов океанического типа, подстилаемый долеритовыми дайками того же состава; общая мощность этого слоя составляет 1,5—2 км. Третий слой в верхней части разреза представлен сло­ем габбро, который вблизи от срединных океанических хребтов подстилается серпентинитами; общая мощность третьего слоя ле­жит в пределах от 4,7 до 5 км.

Средняя плотность океанической коры (без осадков) равна 2,9 г/см3, ее масса — 6,4 • 1024 г, объем осадков — 323 млн км3. Океаническая кора образуется в рифтовых зонах срединно-океа-нических хребтов за счет происходящего под ними выделения базальтовых расплавов из астеносферного слоя Земли и излияния толеритовых базальтов на океанское дно. Установлено, что еже­годно из астеносферы поступает 12 км3 базальтов. Все эти гран­диозные тектоно-магматические процессы сопровождаются повы­шенной сейсмичностью и не имеют себе равных на континентах.

Континентальная кора резко отличается от океанической по мощности, строению и составу. Ее мощность меняется от 20—25 км под островными дугами и участками с переходным ти­пом коры до 80 км под молодыми складчатыми поясами Земли, например под Андами или Альпийско-Гималайским поясом. Мощность континентальной коры под древними платформами составляет в среднем 40 км. Континентальная кора сложена тре­мя слоями, верхний из которых осадочный, а два нижних пред­ставлены кристаллическими породами. Осадочный слой сложен глинистыми осадками и карбонатами мелководных морских бас-


сейнов и имеет весьма различную мощность от 0 на древних щи­тах до 15 км в краевых прогибах платформ. Под осадочным сло­ем залегают докембрийские «гранитные» породы, зачастую преобразованные процессами регионального метаморфизма. Да­лее залегает базальтовый слой. Отличием океанической коры от континентальной является наличие в последней гранитного слоя. Далее океаническая и континентальная кора подстилаются поро­дами верхней мантии.

Земная кора имеет алюмосиликатный состав, представленный, главным образом, легкоплавкими соединениями. Из химических элементов преобладающими являются кислород (43,13 %), крем­ний (26 %) и алюминий (7,45 %) в форме силикатов и оксидов (табл. 2).

Таблица 2