Средний химический состав земной коры

 

 

Соединение Содержание, %
Океаническая кора Континентальная кора
2 ТЮ2 А12О3 Ре2О3 РеО МпО МеО СаО Ыа2О К2О 61,9 0,8 15,6 2,6 3,9 0,1 3,1 5,7 ЗД 2,9 49,4 1,4 16,0 2,3 7,6 0,2 8,0 11,4 2,7 0,2

Химический состав земной коры, %, следующий: кисло­род — 46,8; кремний — 27,3; алюминий — 8,7; железо —5,1; каль­ций — 3,6; натрий — 2,6; калий — 2,6; магний — 2,1; другие — 1,2.

Как показывают последние данные, состав океанической ко­ры настолько постоянен, что его можно считать одной из глоба­льных констант, так же как состав атмосферного воздуха или среднюю соленость морской воды. Это является свидетельством единства механизма ее образования.

Важным обстоятельством, отличающим земную кору от дру­гих внутренних геосфер, является наличие в ней повышенного содержания долгоживущих радиоактивных изотопов урана 232], тория 237Тп, калия 40К, причем их наибольшая концентрация от­мечена для «гранитного» слоя континентальной коры, в океани­ческой же коре радиоактивных элементов ничтожно мало.


вулканы

Океан

шт

' ^~^1/'}2) Плавление

Рис. 2. Схематический разрез зоны пододвигания океанической литосферы

под континентальную

Рис. 3. Блок-диаграмма трансформного разлома океанической литосферы

Литосфера— это оболочка Земли, объединяющая земную кору и часть верхней мантии. Характерным признакРм литосферы явля­ется то, что в нее входят породы в твердом кристаллическом со­стоянии и она обладает жесткостью и прочностью. Вниз по раз­резу от поверхности Земли наблюдается Рост температуры. Расположенная под литосферой пластичная оболочка ман­тии — астеносфера, в которой при высоких температурах вещество частично расплавлено, и вследствие этого в отличие от литосферы астеносфера не обладает прочностью и может гшастично деформи­роваться, вплоть до способности течь даже под действием очень малых избыточных давлений (рис. 2, 3). В свете современных представлений, согласно теории тектоники литосферных плит, установлено, что литосферные плиты, который слагают внешнюю оболочку Земли, образуются за счет остываний и полной кристал­лизации частично расплавлен­ного вещества астеносферы, подобно тому, как это проис­ходит, например, на реке при замерзании воды и образова­нии льда в морозный день. Следует отметить, что слагаю­щий верхнюю мантию лерцо-лит обладает сложным соста­вом, в связи с чем вещество астеносферы, находясь в твер-

дом состоянии, механически


ослаблено настолько, что способно проявлять ползучесть. Это по­казывает, что астеносфера в масштабах геологического времени ве­дет себя как вязкая жидкость. Таким образом, литосфера способна к движению относительно нижней мантии за счет ослабленности астеносферы. Важным фактом, подтверждающим возможность пе­ремещения литосферных плит, является то, что астеносфера выра­жена глобально, хотя ее глубина, мощность и физические свойства варьируют в широких пределах. Мощность литосферы меняется от нескольких километров под рифтовыми долинами срединных оке­анических хребтов до 100 км под периферией океанов, а под древ­ними щитами мощность литосферы достигает 300—350 км.


Глава 2

ТЕПЛОВОЙ РЕЖИМ ЗЕМНОЙ КОРЫ

Земная кора имеет два основных источника тепла: от Солнца и от распада радиоактивных веществ в своей нижней части на границе с верхней мантией. В недрах же Земли температура уве­личивается с глубиной от 1300 °С в верхней мантии до 3700 °С в центре ядра. Увеличение температуры происходит по адиабатиче­скому закону: оно зависит от сжатия вещества под давлением при невозможности теплообмена с окружающей средой.

В земной коре различают три температурные зоны: /—пере­менных температур; // — постоянных температур; /// — нараста­ния температур (рис. 4). Изменение температур в зоне перемен­ных температур определяется климатом местности. Суточные колебания практически затухают на глубинах около 1,5 м, а го­довые (сезонные) — на глубинах 20—30 м. Для средних широт ха­рактерна кривая а (летний период) и кривая б (зимний период). В зимний период в зоне / образуется также подзона промерзания

е со   ФП
у. '
    Л
    III

(1А), где температура опускается ни­же 0 °С. Мощность этой подзоны зависит от климата, типа горных пород и колеблется от нескольких сантиметров до 2 м и более.

При строительстве необходимо устанавливать наличие на стройпло­щадках подзоны и величину глу­бины промерзания земли. Для реше-

Рис. 4. Зоны температур НИЯ ЭХ вопросовИСПОЛЬЗУЮТ три

в земной коре пути: 1) по соответствующей карте в

(П — поверхность Земли) СНиПе определяют наличие подзо-


ны и глубину промерзания; величину промерзания при этом кор­ректируют по типу горных пород, например песок промерзает больше, чем глина; 2) величину промерзания можно определять по формулам или 3) использовать многолетние (более 10 лет) наблю­дения за промерзанием земли в данном районе.

Знание величины промерзания позволяет строителям опреде­лять необходимую глубину заложения фундаментов объектов и подземных водонесущих коммуникаций.

По мере углубления в землю влияние сезонных колебаний температур уменьшается и на глубине примерно 15—40 м нахо­дится зона постоянной температуры, которая соответствует сред­негодовой температуре данной местности. Под Москвой эта зона начинается на глубине 20 м, около Санкт-Петербурга с 19,6 м.

Зона постоянных температур может быть использована при различных видах подземного строительства.

В пределах зоны /// температура с глубиной возрастает. Вели­чина нарастания температуры на каждые 100 м глубины называет­ся геотермическим градиентом, а глубина, при которой температу­ра повышается на 1 "С, — геотермической ступенью. Теоретически средняя величина этой ступени составляет 33 м. Непосредствен­ные измерения показали, что величина геотермической ступени на разных участках Земли колеблется довольно в широких пределах: Мончетундра — 6,54 м, Донецкий бассейн — 30,68 м и т. д.

Закономерное нарастание температуры с глубиной справедли­во лишь до некоторой глубины. Исследования последних лет по­казали, что в Москве на глубине 1630 м она достигает +41 °С, а в Прикаспии на глубине 3000 м — уже +108 °С.

Нарастание температуры с глубиной следует учитывать при проектировании сооружений глубокого заложения, особенно при активно развивающемся в последние годы освоении подземного пространства городов, хранилищ различного рода промышленных отходов, особенно радиоактивных, при строительстве метрополи­тенов.

Глава 3

МИНЕРАЛЬНЫЙ И ПЕТРОГРАФИЧЕСКИЙ СОСТАВ

ЗЕМНОЙ КОРЫ

Земная кора сложена горными породами. Минералы входят в состав горных пород, хотя иногда создают и свои отдельные скопления. Прежде чем дать характеристику минералам и гор­ным породам, следует заметить, что в строительном производстве


одновременно используют минеральные образования как природ­ного, так и искусственного происхождения. Поэтому после опи­сания минералов даются некоторые сведения по искусственным минералам, а после горных пород — по техническим каменным материалам. Минералы изучает наука минералогия, а горные по­роды — петрография.