Обязательные вдохи, контролируемые по объему - режим Volume Control

 

Проведение объемной вентиляции в режиме Volume Control возможно в алгоритмах Assist Control и SIMV (см. рис. 3.1 и 3.2). Кроме того, при алгоритме SIMV имеется возможность осуществления вдохов по требованию в специальных режимах Pressure Support и СРАР.

В любой модели респиратора, даже в самой простой, врач устанавливает величину дыхательного объема обязательного механического вдоха и частоту дыхания. Кроме того, в более сложных моделях можно регулировать скорость потока подаваемого обязательного вдоха, для чего существуют три способа:

• установка величины пикового потока;

• изменение соотношения вдоха к выдоху;

• изменение формы потока.

Опишем установку величины пикового потока. При объемной вентиляции респиратор получает задачу подать в легкие определенный дыхательный объем. Для этого нужно создать дыхательный поток, который имеет максимальные (пиковые) значения в начале вдоха. Чем больше величина пикового потока, тем быстрее поступает дыхательный объем в легкие больного. Соответственно укорачивается время вдоха и удлиняется выдох. Кроме того, увеличивается пиковое давление в Дыхательной системе. Если у пациента есть проблемы с обеспечением выдоха (например, он страдает ХОБЛ), то нарастание скорости пикового потока является положительным моментом. С другой стороны, повышение пикового давления может провоцировать возникновение кашля и усиливать опасность баротравмы. Вопрос о том, что более опасно для больного в отношении возникновения баротравмы при остром повреждении легких (ОПЛ) и остром респираторном дистресс-синдроме (ОРДС) - повышение пикового давления или давления плато вдоха, остается открытым. Тем не менее, рациональнее избегать значительного повышения пикового давления в дыхательных путях.

Еще одним фактором, определяющим оптимальную величину пикового потока, является индивидуальный дыхательный паттерн больного. Внимательное наблюдение за экскурсиями грудной клетки и соответствием работы аппарата ИВЛ потребностям больного позволяет выбрать оптимальную величину пикового потока. Значительно облегчает решение указанной задачи графическое представление кривых давления, потока и объема на экране респиратора.

Изменение отношения вдоха к выдоху приводит к тем же результатам, что и регулирование величины пикового потока. В простых моделях указанная регулировка осуществляется ступенчато, в более сложных - плавно. Аналогично описанным подходам по изменению пикового потока, для пациентов с ОПЛ и ОРДС нужно устанавливать отношение вдоха к выдоху больше (1:2- 1:1, иногда 2:1), чем для больных с ХОБЛ (1:3- 1:4).

Форма потока может быть нисходящей, прямоугольной, синусообразной и восходящей (рис. 4.5). Рекомендуется использовать нисходящую форму потока, поскольку она в большей степени похожа на форму потока при вентиляции Pressure Control. Указанное обстоятельство обеспечивает лучшее распределение вдыхаемой кислородно-воздушной смеси при меньшем давлении в дыхательных путях по сравнению с остальными формами потока. Наименее удачна в этом отношении восходящая форма потока, поэтому она практически не реализуется современными респираторами.

Рис. 4.5. Формы потока вдоха в режиме Volume Control, используемые в современных респираторах: а - прямоугольная; б - нисходящая; в - синусообразная.

 

Наложение кривой давления, возникающей при прямоугольной форме дыхательного потока (в виде пунктира) позволяет наглядно продемонстрировать, что эта форма наименее безопасна в плане возникновения баротравмы.

Для лучшего распределения поступившей в легкие дыхательной смеси имеется возможность создания паузы вдоха. Во время паузы все клапаны респиратора закрыты, что, кроме того, позволяет оценить величину давления плато.

Триггирование. Установка чувствительности производится в зависимости от типа используемого триггера. Если применяется триггер по давлению, то чувствительность дозируется в сантиметрах водного столба. Порог триггирования соответствует той величине отрицательного давления в контуре респиратора, которую создает больной при попытке вдоха. Для увеличения чувствительности триггера и укорочения времени отклика респиратора на дыхательную попытку больного датчик давления располагают вблизи интубационной трубки (проксимальный триггер).

Если установки чувствительности слишком высоки по абсолютной величине, то дыхательные попытки больного не приводят к триггированию вдоха - так называемые неэффективные попытки (рис. 4.6). Однако если установить слишком маленькую абсолютную величину, то может возникнуть аутоциклирование.

Рис. 4.6. Неэффективное триггирование механических вдохов (а) из-за недостаточной чувствительности триггера. Стрелками указаны неэффективные попытки. При повышении чувствительности триггера (б) все дыхательные попытки больного сопровождаются вспомогательным вдохом.

 

Аутоциклирование - это подача "несанкционированных" вдохов: нет дыхательной попытки больного, не наступило время для подачи нетриггированного вдоха. Иными словами, респиратор реагирует на ложные стимулы для начала вдоха. Причиной аутоциклирования могут быть утечки по контуру респиратора (рис. 4.7). Вторая причина - слишком длительное время вдоха, вследствие чего у больного не остается времени на полноценный выдох. В результате в обоих случаях в конце выдоха имеется давление ниже порога установленной чувствительности, которое респиратор воспринимает как сигнал к подаче нового вдоха. Еще одна причина аутоциклирования - небольшие движения воздуха в дыхательном контуре, например при появлении в нем конденсата или при передаче сокращений сердца при высоком ударном объеме (см. рис. 10-5). Нередко к аутоциклированию приводит икота.

Рис. 4.7. Аутоциклирование из-за утечек по контуру

 

Если применяется триггер по потоку, то чувствительность дозируют в литрах в минуту. Порог триггирования соответствует той величине потока, который создает больной при попытке вдоха. Простые модели респираторов имеют только один датчик потока, который располагается в колене выдоха дыхательного контура вблизи респиратора на удалении от больного (дистальный триггер). В связи с этим нередко можно наблюдать ситуации, когда респиратор реагирует на дыхательную попытку с большой задержкой. В результате теоретически более чувствительный, но располагающийся дистально триггер по потоку оказывается на деле менее чувствительным, чем триггер по давлению, располагающийся проксимально. Единственным преимуществом триггера по потоку в итоге оказывается меньшая тенденция к развитию аутоциклирования.

Отключение триггера - так называемый триггер по времени - приводит к появлению режима контролируемой минутной вентиляции (Controlled Mandatory Ventilation - CMV) (см. рис. 4.1, а). Для того чтобы отключить триггирование, в некоторых моделях существует положение "Выключено". В других респираторах нужно установить слишком большую величину необходимого для триггирования отрицательного давления в дыхательных путях. Подчеркнем, что в настоящее время данный режим используется только при полном выключении спонтанного дыхания во время наркоза или, в редких случаях, грубой дыхательной аритмии (например, при столбняке, судорожном статусе, иногда - при тяжелом ОРДС). Впрочем, даже в таких клинических ситуациях использование современных респираторов высокого класса обеспечивает совпадение Дыхательного паттерна больного и работы аппарата ИВЛ без выключения спонтанного дыхания.

Доставка. В режиме Volume Control респиратор осуществляет доставку (контроль) объема.

Переключение с вдоха на выдох. Этот процесс возможен в трех вариантах: по объему, т. е. после введения в легкие заданного объема, по давлению - при превышении безопасного уровня давления в дыхательных путях, и по времени - после окончания установленной врачом паузы вдоха.

Тревоги. В описываемом режиме возможны следующие тревоги:

• ограничение максимального давления в дыхательных путях (Рmax). Эта тревога не просто обеспечивает звуковую и световую сигнализацию о превышении допустимого давления в дыхательной системе, но и прерывает механический вдох для предупреждения баротравмы. Очевидно, что повторение подобных ситуаций может привести к гиповентиляции и гипоксии, поэтому необходимы меры по разрешению вызывающей тревогу проблемы;

• ограничение верхней и нижней границы минутного объема дыхания (МОД). Указанная тревога позволяет вовремя диагностировать гипер- и гиповентиляцию;

• контроль верхнего предела частоты дыхания. Данная тревога позволяет предупредить избыточную работу дыхательной мускулатуры. Тревога нижней границы МОД может не диагностировать снижение дыхательного объема из-за компенсаторного учащения дыхания. В то же время благодаря тревоге верхнего предела частоты можно предупредить избыточную работу дыхательной мускулатуры;

• контроль нижней границы дыхательного объема. Указанную тревогу используют вместо предыдущей;

• контроль нижней границы давления в дыхательных путях;

• контроль нижней границы установленного PEEP. Последние две тревоги позволяют вовремя диагностировать небольшие утечки в дыхательном контуре, связанные с неплотными соединениями шлангов, сдутой манжетой интубационной трубки, треснутым влагосборником и т. д.

Преимущества режима. Вентиляция в режиме Volume Control гарантирует поступление определенного объема кислорода и выведение необходимого количества углекислоты.

Недостатки режима. При ухудшении механических свойств легких возможно избыточное повышение давления в дыхательных путях, что небезопасно, так как приводит или к баротравме, или к преждевременному прерыванию вдоха и гиповентиляции. В большинстве респираторов, кроме самых современных моделей, исключена возможность самостоятельного дыхания больного во время подачи механического вдоха.

Показания к использованию режима - проведение респираторной поддержки в тех случаях, когда нет выраженного поражения легких и при этом крайне важно обеспечить точное поступление кислорода и выведение углекислоты. В первую очередь это касается пациентов с заболеваниями и поражениями головного мозга. Больные указанной категории очень чувствительны к гипоксии. Они также плохо переносят резкие колебания уровня углекислоты: гипокапния вызывает спазм церебральных сосудов, гиперкапния приводит к внутричерепной гипертензии. Так же как и для пациентов с пораженным мозгом, гипоксия очень опасна для больных с тяжелой патологией сердца.

Стандартные установки респиратора в режиме Volume Control: дыхательный объем 8-9 мл/кг (обычно 600 -700 мл), частота вдохов 12- 14 в 1 мин, PEEP - 5-8 см вод. ст., чувствительность - 3-4 см вод. ст., или 1,5-2 л/мин, форма потока-нисходящая, пауза вдоха - 0,1 - 0,3 с, скорость пикового потока - 35-40 л/мин. Отношение вдоха к выдоху- 1:2. У пациентов с затруднением выдоха скорость потока может быть увеличена до 70 -90 л/мин, отношение вдоха к выдоху следует уменьшить до 1:3 - 1:4, а величина паузы вдоха должна быть установлена на ноль.

Тревоги: Рmax 30 см вод. ст. Величина остальных тревог устанавливается таким образом, чтобы отличаться от реальных показателей минутного и дыхательного объема, частоты дыхания, давления в дыхательных путях и PEEP на 15-20%. Если границы тревог установлены слишком близко к реальным показателям, то они будут очень часто срабатывать, что приведет к игнорированию их персоналом. Если границы будут установлены слишком далеко, то реальные параметры ИВЛ могут значительно отличаться от установленных показателей. И в том, и в другом случае пострадает безопасность больного.

Коммерческие названия режима. В случае, когда отсутствует триггирование вдохов, режим носит название контролируемой обязательной вентиляции (Control Mandatory Ventilation, CMV), или перемежающейся вентиляции под положительным Давлением (Intermittent Positive Pressure Ventilation, IPPV). При включении триггера режим носит название CMV Assist или CMV-SIMV (IPPV Assist или IPPV-SIMV соответственно).