ГЛАВА 5. НЕРВНАЯ СИСТЕМА

ГЛАВА 5. НЕРВНАЯ СИСТЕМА

Нервная система человека (рис. 293) подразделяется на центральную (головной и спинной мозг) ипериферическую(нервные корешки, узлы, сплетения, черепные и спинномозговые нервы).

 

Рисунок 293. Схема нервной системы человека

На рисунке схематично показана нервная система человека. Она играет главную роль в согласованной деятельности организма. Особый комплекс периферических нервов и нервных узлов, иннервирующих сердце, легкие, пищеварительный тракт и другие внутренние органы, сосуды и ткани, и есть вегетативная нервная система. Ее работа, как правило, не зависит от волевых усилий человека, и в норме мы не ощущаем раздражения вегетативных узлов и нервов. Нервные узлы симпатического отдела вегетативной нервной системы образуют симпатические нервные стволы, расположенные около спинного мозга, а нервные узлы другого отдела — парасимпатического – лежат во внутренних органах или около них.

Для слаженной деятельности различных частей такой сложной системы, как организм человека, необходимо координирующее устройство соответственной сложности. И в самом деле, нервная система, интегрирующая деятельность всех частей тела, является, несомненно, самой сложной из всех систем органов. Мышцы и железы животного или человека носят общее название эффекторов; глаза, уши и другие органы чувств называются рецепторами. Нервная система, состоящая из головного мозга, спинного мозга и проводящих путей, соединяет рецепторы с эффекторами и передает импульсы, или «сообщения», от первых ко вторым. Она способна делать это таким образом, что при раздражении того или иного рецептора должным образом реагирует надлежащий эффектор. Основными функциями нервной системы являются проведение импульсов и интеграция деятельности различных систем организма. Координирующие функции нервной системы, эндокринная регуляция и собственные регуляторные механизмы внутриклеточных ферментных систем (торможение и стимуляция активности ферментов, индукция и репрессия их синтеза) — все это факторы, способствующие гомеостазу, т.е. поддержанию постоянства внутренней среды организма.

Центральная нервная система (ЦНС) — это совокупность нервных образований спинного и головного мозга, обеспечивающих восприятие, обработку, передачу, хранение и воспроизведе-ние информации с целью адекватного взаимодействия организма и изменений окружающей среды, координации оптимальной работы органов, их систем и организма в целом.

Каждая из этих структур имеет морфологическую и функциональную специфику. Но, наряду с этим, у всех структур нервной системы есть ряд общих свойств и функций, к которым относятся: нейронное строение, электрическая и химическая синаптическая связь между нейронами, образование локальных сетей из нейронов, реализующих специфическую функцию, множественность прямых и обратных связей между структурами, способность нейронов всех структур к восприятию, обработке, передаче и хранению информации, преобладание числа входов для ввода информации над числом выходов, способность к параллельной обработке информации, способность к саморегуляции, функционирование на основе рефлекторного доминантного принципа.

Головной мозг является важнейшим отделом ЦНС, в нем различают стволовую часть и конечный мозг, включающего подкорковые или базальные ганглии и большие полушария.

Основные части головного мозга выделяются уже к 3-му месяцу эмбрионального развития, а к 5-му месяцу эмбриогенеза уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса головного мозга составляет около 400 г., причем у девочек он несколько меньше (388 и 391 у девочек и мальчиков соответственно). По отношению к массе тела мозг у новорожденного значительно больше, чем у взрослого. Так, если у новорожденного он составляет 1/8 массы тела, то у взрослого — 1/40. Наиболее интенсивно головной мозг человека развивается в первые два года постнатального развития. Затем темпы его роста снижаются, но продолжают оставаться высокими до 6-7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого мозга. Окончательное созревание головного мозга заканчивается только к 17-20 годам. К этому возрасту масса мозга увеличивается по сравнению с новорожденными в 4-5 раз и составляет в среднем у мужчин 1400 г, а у женщин — 1260 г. Следует отметить, что абсолютная масса мозга не определяет непосредственно умственные способности человека.

Изменения размеров, формы и массы мозга сопровождается изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становится четко разграниченным белое и серое вещество, формируются различные проводящие пути головного мозга.

Развития мозга, как и других систем, идет гетерохронно. Раньше других созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возраст-ном этапе. Функциональной полноценности достигают вначале стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы по своему развитию приближаются к мозгу взрослого человека уже к 2-4 годам постнатального периода.

Продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок относятся к стволу мозга. В филогенетическом отношении это наиболее древние нервные структуры и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов.

В процессе онтогенеза созревание структур стволовой части головного мозга наиболее интенсивно происходит в первые два года жизни. Окончательное формирование этих структур, особенно промежуточного мозга, завершается только в 13-16 лет, когда заканчивается половое развитие подростков. Многие особенности низшей и высшей нервной деятельности у детей подросткового возраста объясняются функциональными свойствами промежуточного мозга и некоторых других подкорковых структур.

Наиболее молодым в филогенетическом отношении является конечный мозг. В его состав входят большие полушария и расположенные под ними скопления серого вещества в виде подкорковых или базальных ганглиев.

Большие полушария осуществляют регуляцию высших нервных функций, лежащих в основе всех психических процессов человека. Правое и левое полушарие тесно связаны между собой с помощью огромного количества нервных волокон, образующих мозолистое тело. Многие нервные процессы, выходящие из какой-либо точки одного полушария, проецируются в сим-метричную точку другого полушария. Таким образом, в нервной деятельности полушарий конечного мозга проявляется свойство билатеральной симметрии.

Существует предположение, что в процессе онтогенеза развитие парной деятельности полушарий идет от неустойчивой симметрии к неустойчивой асимметрии, и наконец, к устойчивой функциональной асимметрии. Это подтверждается развитием бимануальных действий человека, то есть особенностей двигательной деятельности левой и правой рук. Пока-зано, что к праворукости дети переходят с 2-4 лет. В этом возрасте правши составляют 38%, а к 4-6 годам — 75%. Иначе говоря, в значительной степени моторная асимметрия зависит от условий воспитания ребенка, но вместе с тем существует и наследственная предраспо-ложенность.

Темпы созревания левого и правого полушарий имеют половые особенности. Левое полу-шарие у девочек развивается быстрее, что свидетельствует о более раннем созревании доминантного полушария. Данный факт косвенно подтверждается также более быстрым развитием у девочек речи и некоторых показателей психомоторики.

Высшим центром регуляции и управления всей деятельностью организма, начиная от самых примитивных физиологических отправлений и кончая сложнейшими психическими процес-сами у человека, является кора головного мозга. Активное формирование полушарий мозга начинается с 12-й недели эмбриогенеза и интенсивно продолжается в первые годы постнаталь-ного развития, особенно до 2 лет. Клеточное строение, форма и расположение борозд и извилин приближается к взрослому мозгу в 7 лет. А в лобных долях это различие сглаживается только к 12 годам. Существует прямая зависимость между морфофункциональным созреванием лобных долей больших полушарий и формированием психических функций у детей. Окончательное созревание больших полушарий и коры мозга завершается к 20-22 годам.

Морфологический анализ процессов созревания КГМ ребенка на клеточном уровне свидетельствует о постоянном увеличении размеров высших первичных, вторичных и третич-ных зон КГМ в процессе постэмбрионального развития: чем больше возраст ребенка, тем большие размеры занимают эти корковые зоны, и тем сложнее становится психическая деятельность.

Таким образом, в процессе постнатального развития происходит совершенствование морфо-логического строения КГМ, а параллельно этому и совершенствование высшей нервной деятельности ребенка и его психических процессов. Например, поля двигательного центра речи достигают функциональной полноценности только к 7 годам, к этому возрасту они увеличи-ваются на 64-73% в сравнении с мозгом новорожденного. То же можно сказать и о корковых зонах, ответственных за интеграцию слуховых и зрительных раздражителей, что имеет большое значение в формировании речи.

Важные данные о функциональной зрелости коры и подкорковых образований мозга и участия их в восприятии афферентных сигналов в разные возрастные периоды получены при использовании электрофизиологических методов. Анализ имеющихся в литературе данных о характере фоновой и вызванной электрической активности мозга человека на разных этапах онтогенеза рассматривается в связи с проблемой созревания высших отделов центральной нервной системы.

В раннем постнатальном периоде наиболее функционально зрелыми являются мезодиэнце-фалические структуры мозга, определяющие ЭЭГ-картину глубокого сна и реакцию возбуждения у новорожденного ребенка. Ряд факторов свидетельствует, что кора больших полушарий начинает функционировать уже с момента рождения ребенка. Нервные элементы коры больших полушарий новорожденного способны продуцировать кратковременную ритмическую электрическую активность. Это выражается в виде: 1) наличия групп синхронизи-рованных ЭЭГ-колебаний в затылочных областях мозга в переходном от бодрствования ко сну состоянии; 2) реакции усвоения ритма световых мельканий, наблюдаемой с первых часов жизни ребенка; 3) наличия ритмического сенсорного разряда, регистрируемого в затылочной области коры при значительной стимуляции. Отмечается, что кора больших полушарий новорожденных вовлекается в реакцию при афферентных воздействиях. В этом случае наблюдаются как генерализованные изменения электрической активности, обусловленные возбуждением подкорковых неспецифических структур мозга, так и локальные вызванные ответы, свидетельствующие о поступлении сигнала в кору больших полушарий по специфическому афферентному пути. Наличие ответных специфических и неспецифических реакций на афферентное раздражение означает функционирование восходящих ретикулярных и таламокортикальных связей, посылающих сенсорную информацию в кору больших полушарий. Для оценки способности коры воспринимать приходящую информацию наибольший интерес представляет наличие с момента рождения ребенка начальной позитивности вызванного специфического ответа, свидетельствующее о непосредственном участии нейронов 3-го и 4-го слоев коры в приеме афферентного сигнала.

Подчеркивая функционирование коры больших полушарий в период новорожденности, следует иметь в виду и отличия в деятельности ее нервных элементов по сравнению со взрослыми. Одним из таких проявлений служит отсутствие синхронизированной ритмической активности во время бодрствования новорожденных. Устойчивая ритмика в ЭЭГ бодрствую-щих детей регистрируется только с 2-3 месяцев постнатальной жизни. Появление организован-ной ритмики в состоянии спокойного бодрствования отражает важный этап в созревании коры мозга ребенка. В этом возрасте исчезают архаические рефлексы, развивается оптомоторная пространственная координация.

В течение первого года жизни формируется строго ритмическая электрическая активность частотой 5 Гц с фокусом в затылочной области коры, которая может рассматриваться как аналог альфа-ритма взрослого человека. С возрастом отмечается прогрессивное учащение альфа-ритма, появление и стабилизация его в центральных областях коры. Формирование основного ритма электрической активности, отражающее морфофункциональное созревание нейронного аппарата коры больших полушарий, заканчивается к 16-18-летнему возрасту. Созревание нервных элементов коры больших полушарий проявляется также в эволюции специфически вызванных потенциалов. В процессе индивидуального развития ребенка отмечается укорочение временных параметров ответа, усложнение его компонентного состава и появление вызванных потенциалов в ассоциативных областях коры. Включения ассоциа-тивных зон в прием и переработку качественно специфической информации, вероятно, опре-деляет возможность синтеза интегрального образа раздражителей разного информационного значения.

Параллельно с изменениями ЭЭГ, обусловленными функциональным созреванием коры больших полушарий, отмечается уменьшение выраженности подкорковых знаков в ЭЭГ (тета - волн, билатеральных пароксизмальных разрядов, усиленных неспецифических ответов). Ослаб-ление подкорковых знаков в ЭЭГ с возрастом можно объяснить усилением тормозных влияний созревающей коры на подкорковые структуры.

Таким образом, выявляются определенные этапы функционального созревания коры и подкорковых структур мозга, специфика их взаимных влияний в различные возрастные периоды.

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секретор-ную и защитную функции.

Вся нервная система построена на нервной ткани. Нервная ткань состоит из нервных клеток (нейронов) и связанных с ними анатомически и функционально вспомогательных клеток нейроглии. Нейроны выполняют специфические функции, являясь структурно-функциональной единицей нервной системы. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую (питательную), разграничительную и защитную функции.

Нейрон (нейроцит) получает, перерабатывает, проводит и передает информацию, закоди-рованную в виде электрических или химических сигналов (нервных импульсов).

 

Рисунок 294. Нервные клетки. А чувствительный нейрон. Б двигательный нейрон. Стрелки показывают направление следования нервных импульсов. А: 1 - чувствительные нервные окончания; 2 - дендриты; 3 - тело нервной клетки; 4 - аксон. Б: 1 - дендриты; 1 - тело нервной клетки; 3 - аксон; 4 - двигательное нервное окончание (нервно-мышечная бляшка).

Каждый нейрон имеет тело, отростки и их окончания (рис. 294). Снаружи нервная клетка окружена оболочкой (цитолеммой), способной проводить возбуждение, а также обеспечивать обмен веществ между клеткой и окружающей их средой. Тело нервной клетки содержит ядро и окружающую его цитоплазму (перикарион). Цитоплазма нейронов богата органеллами (субклеточными образованиями, выполняющими ту или иную функцию). Диаметр тел нейро-нов варьирует от 4-5 до 135 мкм. Форма тел нервных клеток тоже различная — от округлой, овоидной до пирамидальной. От тела нервной клетки отходят различной длины тонкие отростки двух типов. Один или несколько древовидно ветвящихся отростков, по которым нервный импульс приносится к телу нейрона, называют дендритом. У большинства клеток их длина составляет около 0,2 мкм. Единственный, обычно длинный отросток, по которому нервный импульс направляется от тела нервной клетки — это аксон, или нейрит.

По количеству отростковнейроны подразделяются на униполярные, би- и мульти-полярные клетки. Униполярные (одноотростчатые) нейроны имеют лишь один отросток. У человека такие нейроны встречаются лишь на ранних стадиях внутриутробного развития. Биполярные (двухотростчатые) нейроны имеют один аксон и один дендрит. Их разно-видностью являются псевдоуниполярные (ложноуниполярные) нейроны. Аксон и дендрит этих клеток начинаются от общего выроста тела и в последущем Т-образно делятся. Мультиполяр-ные (многоотросчатые) нейроны имеют один аксон и много дендритов, они составляют большинство в нервной системе человека. Нервные клетки динамически поляризованы, т.е. способны проводить нервный импульс только в одном направлении — от дендритов к аксону.

В зависимости от функции нервные клетки подразделяют на чувствительные, вставочные и эффекторные.

Чувствительные (рецепторные, афферентные) нейроны. Эти нейроны своими окончаниями воспринимают различные виды раздражений. Возникшие в нервных окончаниях (рецепторах) импульсы по дендритам проводятся к телу нейрона, которое находится всегда вне головного и спинного мозга, располагаясь в узлах (ганглиях) периферической нервной системы. Затем по аксону нервный импульс направляется в центральную нервную систему, в спинной или в головной мозг. Поэтому чувствительные нейроны называют также приносящими (аффе-рентными) нервными клетками. Нервные окончания (рецепторы) различаются по своему строению, расположению и функциям. Выделяют экстеро-, интеро- и проприо-рецепторы. Экстерорецепторы воспринимают раздражение из внешней среды. Эти рецепторы находятся в наружных покровах тела (коже, слизистых оболочках), в органах чувств. Интерорецепторы получают раздражение в основном при изменении химического состава внутренней среды организма (хеморецепторы), давления в тканях и органах (барорецепторы). Проприо-рецепторы воспринимают раздражение (натяжение, напряжение) в мышцах, сухожилиях, связках, фасциях и суставных капсулах. В соответствии с функцией выделяют терморецеп-торы, которые воспринимают изменения температуры, и механорецепторы, улавливающие различные виды механических воздействий (прикосновение к коже, ее сдавление). Ноци-рецепторы воспринимают болевые раздражения.

Вставочные (ассоциативные, кондукторные) нейроны составляют до 97% нервных клеток нервной системы. Эти нейроны находятся, как правило, в пределах центральной нервной системы (головного и спинного мозга). Они передают полученный от чувствительного нейрона импульс эффекторному нейрону.

Эффекторные (выносящие или эфферентные) нейроны проводят нервные импульсы от мозга к рабочему органу — мышцам, железам и другим органам. Тела этих нейронов располагаются в головном и спинном мозге, в симпатических или парасимпатических узлах на периферии.

Нервные волокна представляют собой отростки нервных клеток (дендриты, аксоны), покрытые оболочками (рис. 295). При этом отросток в каждом нервном волокне является осевым цилиндром, а окружающие его нейролеммоциты (шванновские клетки), относящиеся к нейроглии, образуют оболочку волокна — нейролемму. С учетом строения оболочек нервные волокна подразделяют на безмякотные (безмиелиновые) и мякотные (миелиновые).

Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Осевой цилиндр как бы прогибает плазматическую мембрану (оболочку) нейролеммоцита, которая смыкается над ним. Сдвоенная над осевым цилиндром мембрана нейролеммоцита получила название мезаксон. Под шванновской клеткой остается узкое пространство (10-15 нм), содержащее тканевую жидкость, участвующую в проведении нервных импульсов. Один нейролеммоцит окутывает несколько (до 5-20) аксонов нервных клеток. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой.

Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки — осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. Внутренний слой, миелиновый, образуется в результате спирального накручивания нейролеммоцита (шванновской клетки) на осевой цилиндр (аксон) нервной клетки. Цитоплазма нейролеммоцита выдавливается из него подобно тому, как это происходит при закручивании периферического конца тюбика с зубной пастой. Таким образом, миелин представляет собой многократно закрученный двойной слой плазматической мембраны (оболочки) нейролеммоцита. Толстая и плотная миелиновая оболочка, богатая жирами, изолирует нервное волокно и предотвращает утечку нервного импульса из аксолеммы (оболочки аксона).

Рисунок 295. Нервные волокна. А миелиновое волокно. Б безмиелиновое волокно.
1 - осевой цилиндр; 2 - миелиновый слой; 3 - мезаксон; 4 - ядро нейролеммоцита (шванновской клетки); 5 - узловой перехват (перехват Ранвье).

Снаружи от миелинового находится тонкий слой, образованный самой цитоплазмой нейролеммоцитов. Дендриты миелиновой оболочки не имеют. Каждый нейролеммоцит (шванновская клетка) окутывает по длине только небольшой участок осевого цилиндра. Поэтому миелиновый слой не сплошной, прерывистый. Через каждые 0,3-1,5 мм имеются так называемые узловые перехваты нервного волокна (перехваты Ранвье), где миелиновый слой отсутствует. В этих местах соседние нейролеммоциты (шванновские клетки) своими концами подходят непосредственно к осевому цилиндру. Перехваты Ранвье способствует быстрому прохождению нервных импульсов по миелиновым нервным волокнам. Нервные импульсы по миелиновым волокнам проводятся как бы прыжками — от перехвата Ранвье к следующему перехвату.

Скорость проведения нервных импульсов по безмиелиновым волокнам составляет 1-2 м/с, а по мякотным (миелиновым) — 5-120 м/с. По мере удаления от тела нейрона скорость проведения импульса уменьшается.

Синапсы. Нейроны нервной системы вступают в контакт друг с другом и образуют цепочки (рис. 296), по которым передается нервный импульс.

Рисунок 296. Схема передачи нервного импульса.

Периферическая нервная система представлена аксонами нервных клеток (осевыми цилиндрами), которые либо покрыты неврилеммой шванновских клеток (безмякотные волокна), либо между неврилеммой и осевым цилиндром имеется многослойная миэлиновая оболочка (мякотные волокна). Мякотные и безмякотные волокна объединяются в пучки, ограниченные трубчатой соединительно-тканной оболочкой — периневрием. Внутри периневральной трубки каждое нервное волокно окружает рыхлая соединительная ткань (эндоневрий). Пучки волокон, покрытые оболочкой, называют нервами. Часто пучки переходят в более толстые образования — нервные стволы, в которых несколько пучков окружены рыхлой соединительной тканью — эпиневрием.

Нейроны соединяются между собой несколькими способами. Наиболее примитивным и древним является протоплазматический способ, когда отросток одной нервной клетки переходит в отросток другой клетки. Если нервные клетки контактируют между собой немиэлинизированными участками сомы или отростков и появляется возможность электро-тонического взаимодействия, соединение называют эфаптическим. Третий способ соединения между нейронами, а также нейрона с клетками, не принадлежащими к нервной системе (мышечными, желудочными), — синаптический — наиболее сложный. Он предполагает наличие специального структурного образования — синапса.

Синапсами называют специализированные контакты между клетками, используемые для передачи сигналов. Синапс состоит из окончания пресинаптического нейрона, постсинап-тической структуры и синаптической щели между ними. Пресинаптические терминали аксона расширяются, образуя концевую «пуговку» («бляшку»), окруженную аксолеммой. Ее участок, почти вплотную прилегающий к постсинаптической мембране другой клетки, называется пресинаптической мембраной. В цитоплазме синаптической бляшки много митохондрий и синаптических пузырьков (везикул) диаметром 40-50 нм.

Ширина синаптической щели в химических синапсах — 20-30 нм, а в электрических — 2-4 нм. Синапсы классифицируют по их расположению на поверхности постсинаптического нейрона. Если аксон оканчивается на дендрите другого нейрона, это аксо-дендритный синапс (рис. 297.1.) (часто синаптическая бляшка как бы «надевается» на специальные выступы — дендритные шипики), если же на соме другого нейрона, это аксо-соматический синапс (около половины поверхности сомы и почти вся поверхность дендритов может быть усеяна контактами от других нейронов). Аксон образует иногда синапсы в своей проксимальной части, лишенной миэлина, либо на синаптической бляшке другого нейрона. Такие синапсы являются аксо-аксонными (В, Д). Реже встречаются синапсы между дендритами (дендро-дендритные) (Б) и между дендритными шипиками и телом другого нейрона (дендро-сома-тические). В окончаниях периферических нервов на мышцах имеются нервно-мышечные (мионевральные) синапсы, на железах — нейросекреторные, а на внутренних органах — органные синапсы. Аксо-васкулярные синапсы наблюдают между нейросекреторными клетками гипоталамуса и стенками капилляров.

Синапсы можно классифицировать, во-первых, по их местоположению и принадлежности соответствующим клеткам (нервно-мышечные, нейро-нейрональные, аксо-соматические, аксо-дендритические и т.д.). Во-вторых, синапсы можно разделить по знаку их действия на возбуждающие и тормозящие. И, наконец, по способу передачи сигналов они разделяются на электрические, в которых сигналы передаются электрическим током, и химические, в которых передатчиком сигнала (трансмиттер) или иначе посредником (медиатор) является то или иное физиологически активное вещество. Существуют и смешанные — электрохимические синапсы. Заметим, что и в том, и в другом синапсе имеются такие компоненты, как пресинаптическая мембрана, постсинаптическая мембрана и разделяющая их синаптическая щель.

В мозге редко встречаются изолированные одиночные синапсы. Обычно несколько синапсов вместе складываются в тот или иной тип групповой синаптической связи. Простейший из таких типов — когда два или несколько синапсов расположены рядом друг с другом и ориенти-рованы в одном направлении; все они бывают аксо-дендритными. Более сложен тип, в котором отросток а образует синапс на отростке б, а отросток б на отростке в. Такая ситуация схематически показана на рис. 297.1.Д. Такие синапсы называют последовательными; их примерами могут служить аксо-аксодендритные и аксо-дендродендритные последовательности.

Еще в одном типе отросток а соединяется с отростком б, а последний — снова с отростком а. Эта ситуация схематически показана на рис. 297.1.Г. Такой синапс принято называть реципрокным. Если два таких синапса расположены рядом, то их называют реципрокной парой. Если же два синапса удалены один от другого, то возникает реципрокное устройство. Наконец, есть такие типы синаптических соединений, когда тесно сближена целая группа терминалей. Этот тип называют синаптической гломерулой (рис. 297.1.Е).

Рисунок 297. Виды синапсов.

Передача информации в синапсе осуществляется специальными химическими веществами-посредниками (медиаторами), выделяемыми из нервных окончаний в синаптическую щель. В нервной системе эти вещества называют нейромедиаторами. Основными нейромедиаторами в вегетативной нервной системе являются ацетилхолин и норадреналин. В состоянии покоя эти медиаторы, вырабатываемые в нервных окончаниях, находятся в особых пузырьках.

Работа этих медиаторов показана на рисунке 298. Условно (так как он занимает считанные доли секунды) весь процесс передачи информации можно разбить на четыре этапа. Как только по пресинаптическому окончанию поступает импульс, на внутренней стороне клеточной мембраны за счет входа ионов натрия происходит образование положительного заряда, и пузырьки с медиатором начинают приближаться к пресинаптической мембране (этап I). На втором этапе осуществляется выход медиатора в синаптическую щель из пузырьков в месте их контакта с пресинаптической мембраной. После выделения из нервных окончаний нейромедиатор проходит синаптическую щель путем диффузии и связывается со своими рецепторами постсинаптической мембраны клетки исполнительного органа или другой нервной клетки (этап III). Активация рецепторов запускает в клетке биохимические процессы, приводящие к изменению ее функционального состояния в соответствии с тем, какой сигнал был получен от афферентных звеньев. На уровне органов это проявляется сокращением или расслаблением гладких мышц (сужением или расширением сосудов, учащением или замедлением и усилением или ослаблением сокращений сердца), выделением секрета и так далее. И, наконец, на четвертом этапе происходит возвращение синапса в состояние покоя либо за счет разрушения медиатора ферментами в синаптической щели, либо благодаря транспорту его обратно в пресинаптическое окончание. Сигналом к прекращению выделения медиатора служит возбуждение им рецепторов пресинаптической мембраны.

Рисунок 298. Функционирование синапса: I – поступление нервного импульса; II – выделение медиатора в синаптическую щель; III – взаимодействие с рецептором постсинаптической мембраны; IV – «судьба» медиатора в синаптической щели – возвращение синапса в состояние покоя. 1 – обратный захват медиатора; 2 – разрушение медиатора ферментом; 3 – возбуждение пресинаптических рецепторов.

 

Выше уже сказано, что в вегетативной нервной системе передача информации осущест-вляется, главным образом, с помощью медиаторов — ацетилхолина и норадреналина. Поэтому пути передачи и синапсы называют холинергическими (медиатор — ацетилхолин) или адренергическими (медиатор — норадреналин). Аналогично этому рецепторы, с кото-рыми связывается ацетилхолин, называют холинорецепторами, а рецепторы норадреналина — адренорецепторами. На адренорецепторы влияет также гормон, выделяемый надпочеч-никами, — адреналин.

Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) — по названиям естественных алкалоидов, которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть м1-, м2- и м3-типа в зависимости от того, в каких органах или тканях они преобладают. Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бета-адренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.

Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы — в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разно-образны.

Зная механизм передачи информации в вегетативной нервной системе, можно предположить, как и в каких местах этой передачи нам необходимо действовать, чтобы выз-вать определенные эффекты. Для этого мы можем использовать вещества, которые имити-руют (миметики) или блокируют (литики) работу нейромедиаторов, угнетают действие ферментов, разрушающих эти медиаторы, или препятствуют высвобождению посредников из пресинаптических пузырьков. Используя такие лекарства, можно оказывать влияние на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и так далее.

В ответ на раздражение нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. Свойство нервной ткани передавать возбуждение называется проводимостью. Скорость проведения возбуждения значительна: от 0,5 до 100 м/с, поэтому между органами и системами быстро устанавливается взаимодействие, отвечающее потребностям организма. Возбуждение проводится по нервным волокнам изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Клетки нейроглии в нервной системе подразделяются на два вида. Это глиоциты (или макроглия) и микроглия.

Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты.

Эпендимоциты образуют плотный слой, выстилающий центральный канал спинного мозга и все желудочки головного мозга. Они участвуют в образовании спинномозговой жидкости, транспортных процессах, в метаболизме мозга, выполняют опорную и разграничительную функции. Эти клетки имеют кубическую или призматическую форму, располагаются они в один слой. Их поверхность покрыта микроворсинками.

Астроциты образуют опорный аппарат центральной нервной системы. Они представляют собой мелкие клетки с многочисленными, расходящимися во все стороны отростками. Различают волокнистые и протоплазматические астроциты. Волокнистые астроциты имеют 20-40 длинных, слабо ветвящихся отростков, преобладают в белом веществе центральной нервной системы. Отростки располагаются между нервными волокнами. Некоторые отростки достигают кровеносных капилляров. Протоплазматические астроциты располагаются преимущественно в сером веществе центральной нервной системы, имеют звездчатую форму, от их тел во все стороны отходят короткие сильно разветвленные, многочисленные отростки. Отростки астроцитов служат опорой для отростков нейронов, образуют сеть, в ячейках которой залегают нейроны. Отростки астроцитов, достигающие поверхности мозга, соединяются между собой и образуют на ней сплошную поверхностную пограничную мембрану.

Олигодендриты — наиболее многочисленная группа клеток нейроглии. Они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний. Олигрдендроциты представляют собой мелкие овоидные клетки диаметром 6-8 мкм с крупным ядром. Клетки имеют небольшое количество отростков конусовидной и трапециевидной формы. Отростки образуют миелиновый слой нервных волокон. Миелинообразующие отростки спирально накручиваются на аксоны. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один сегмент. Между сегментами находится лишенный миелина узловой перехват нервного волокна (перехват Ранвье). Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются нейролеммоцитами (шванновскими клетками).

Микроглия составляет около 5% клеток нейроглии в белом веществе мозга и 18% в сером веществе. Микроглия представлена мелкими удлиненными клетками угловатой или неправильной формы, рассеянными в белом и сером веществе (клетки Ортега). От тела каждой клетки отходят многочисленные отростки разной формы, напоминающие кустики, которые заканчиваются на кровеносных капиллярах. Ядра клеток имеют вытянутую или треугольную форму. Микроглиоциты обладают подвижностью и фагоцитарной способностью. Они выполняют функцию своеобразных «чистильщиков», поглощая частицы погибших клеток.

На срезах ЦНС видны участки серого и белого цветов. Это серое и белое вещества мозга. Серое вещество образовано телами нейронов, безмякотными и тонкими мякотными волокнами, клетками глии и капиллярами: оно или в центре (в спинном мозге), или на поверхности в виде тонкой коры (cortex) больших полушарий и мозжечка, или в виде скоплений серого вещества — ядер (nucleus) в стволе мозга и его подкорковом отделе. Тела нейронов в сером веществе переплетены клеточными телами и отростками астроцитов и нейронов (дендритов и слабомиелинизированных аксонов), идущими к нейрону и от него. Такую густую сеть отростков называют нейропилем (от лат. pilos «войлок»).

Различают три типа организации нейронов в сером веществе: сетевидный, ядерный и корковый. Сетевидный тип характерен для строения ретикулярной формации (РФ) ЦНС. РФ — это центрально расположенный диффузный столб нейронов, тянущийся от верхних отделов спинного мозга до конца мозгового ствола. Нейроны РФ имеют длинные, прямые, слабоветвящиеся дендриты, а их аксоны рассеяны и не объединяются в пучки. Ядерному типу присущи густые скопления нейронов с густоветвящимися дендритами, аксоны же этих клеток объединяются в пучки. Корковый тип отличается послойным распределением нейронов, слоистостью (так организована кора больших полушарий и мозжечка).

Рефлекторная функция спинного мозга.

Серое вещество спинного мозга, задние и передние корешки спинномозговых нервов, собственные пучки белого вещества образует сегментарный аппарат спинного мозга. Он обеспечивает рефлекторную (сегментарную) функцию спинного мозга.

Нервная система функционирует по рефлекторным принципам. Рефлекс представляет собой ответную реакцию организма на внешнее или внутреннее воздействие и распрост-раняется по рефлекторной дуге. Рефлекторные дуги — это цепи, состоящие из нервных клеток.

Простейшая рефлекторная дуга включает чувствительный и эффекторный нейроны, по которым нервный импульс движется от места возникновения (от рецептора) к рабочему органу (эффектору) (рис. 299).

Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинно-мозговом узле. Дендрит начинается рецептором, воспринимающим внешнее или внутреннее раздражение (механическое, химическое и др) и преобразующим его в нервный импульс, который достигает тела нервной клетки. От тела нейрона по аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами эффекторных нейронов. В каждом межнейронном синапсе с помощью биологически активных веществ (медиаторов) происходит передача импульса. Аксон эффек-торного нейрона выходит из спинного мозга в составе передних корешков спинно-мозговых нервов (двигательных или секреторных нервных волокон) и направляется к рабочему органу, вызывая сокращение мышцы, усиление (торможение) секреции железы.

 

Рисунок 299. Простейшая двухнейронная рефлекторная дуга. 1 - чувствительный нейрон; 2 - спинномозговой узел; 3 - миелиновое нервное волокно; 4 - чувствительное нервное окончание; 5 - нервное окончание (бляшка) на мышечном волокне; 6 - спинномозговой нерв; 7 - корешки спинномозговых нервов; 8 - эфферентный (двигательный) нейрон в переднем роге спинного мозга.

Более сложные рефлекторные дуги имеют один или несколько вставочных нейронов. Тело вставочного нейрона в трехнейронных рефлекторных дугах находится в сером веществе задних столбов (рогов) спинного мозга и контактирует с приходящим в составе задних (чувствительных) корешков спинномозговых нервов аксоном чувствительного нейрона. Аксоны вставочных нейронов направляются к передним столбам (рогам), где располагаются тела эффекторных клеток. Аксоны эффекторных клеток направляются к мышцам, железам, влияя на их функцию. В нервной системе много сложных многонейронных рефлекторных дуг, у которых имеется несколько вставочных нейронов, располагающихся в сером веществе спинного и головного мозга.

Примером простейшего рефлекса может служить коленный рефлекс, возникающий в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожи-лию ниже коленной чашечки. После короткого латентного (скрытого) периода происходит сокращение четырехглавой мышцы, в результате которого приподнимается свободно висящая нижняя часть ноги. Коленный рефлекс относится к числу так называемых рефлексов растя-жения мышцы, физиологическое значение которых состоит в регуляции длины мышцы, что особенно важно для поддержания позы. Например, когда человек стоит, каждое сгибание в коленном суставе, даже такое слабое, что его невозможно ни увидеть, ни почувствовать, сопровождается растяжением четырехглавой мышцы и соответствующим усилением активности расположенных в ней чувствительных окончаний (мышечных веретен). В результате происходит дополнительная активация мотонейронов четырехглавой мышцы («коленный рефлекс»), и повышение ее тонуса, противодействующее сгибанию. И, наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения. Частота их импульсации, возбуждающей мотонейроны, уменьшается, и мышечный тонус ослабевает.

Как правило, в движении участвуют несколько мышц, которые по отношению друг к другу могут выступать как агонисты (действуют в одном направлении) либо антагонисты (действуют разнонаправленно). Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении двигательных центров мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгиба-нии тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механи-ческая борьба мышц, судороги, а не приспособительные двигательные акты. При раздраже-нии чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через специальные вставочные нейроны (тормозные клетки Реншоу) — к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых — торможения. В ответ возникает координированный, согласованный рефлекторный акт — сгибательный рефлекс.

Взаимодействие процессов возбуждения и торможения — универсальный принцип, лежащий в основе деятельности нервной системы. Конечно, он реализуется не только на уровне сегментов спинного мозга. Вышестоящие отделы нервной системы осуществляют свое регуляторное влияние, вызывая процессы возбуждения и торможения нейронов нижестоящих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, «тем в большей степени высший отдел является распорядителем и распределителем деятельности организма» (И.П.Павлов). У человека таким «распорядителем и распределителем» является кора больших полушарий головного мозга.
Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II-IV поясничном сегменте; ахиллова — в V поясничном и I-II крестцовых сегментах; подош-венного — в I-II крестцовом, центр брюшных мышц — в VIII-XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III-IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.

Кроме двигательных рефлекторных дуг, на уровне спинного мозга замыкаются вегета-тивные рефлекторные дуги, осуществляющие контроль за деятельностью внутренних орга-нов.

Межсегментарные рефлекторные связи. В спинном мозге помимо описанных выше рефлекторных дуг, ограниченных пределами одного или нескольких сегментов, действуют восходящие и нисходящие межсегментарные рефлекторные пути. Вставочными нейронами в них служат так называемые проприоспинальные нейроны, тела которых находятся в сером веществе спинного мозга, а аксоны поднимаются или спускаются на различные расстояния в составе проприоспинальных трактов белого вещества, никогда не покидая спинной мозг. Опыты с дегенерацией нервных структур (в которых полностью изолируются отдельные части спинного мозга) показали, что к проприоспинальным нейронам относится большинство его нервных клеток. Некоторые из них образуют независимые функциональные группы, ответственные за выполнение автоматических движений (автоматических программ спинного мозга). Межсегментарные рефлексы и эти программы способствуют координации движений, запускаемых на разных уровнях спинного мозга, в частности, передних и задних конечностей, конечностей и шеи.

Благодаря этим рефлексам и автоматическим программам спинной мозг способен обеспе-чивать сложные согласованные движения в ответ на соответствующий сигнал с периферии или от вышележащих отделов центральной нервной системы. Здесь можно говорить об интегративной (объединяющей) функции спинного мозга, хотя следует иметь в виду, что у высших позвоночных (в частности, у млекопитающих) возрастает регуляция спинальных функций высшими отделами центральной нервной системы (процесс энцефализации).

Спинальная локомоция. Обнаружено, что основные характеристики локомоции, т.е. пере-мещения человека или животного в окружающей среде при помощи координированных движений конечностей, запрограммированы на уровне спинного мозга. Болевое раздражение какой-либо конечности спинального животного вызывает рефлекторные движения всех четырех; если же такая стимуляция продолжается достаточно долго, могут возникнуть ритмичные сгибательные и разгибательные движения не подвергающихся раздражению конечностей. Если такое животное поставить на тредмилл (бегущую дорожку), то при некоторых условиях оно будет совершать координированные шагательные движения, весьма сходные с естественными.

У спинального животного, анестезированного и парализованного кураре, в определенных условиях можно зарегистрировать ритмично чередующиеся залпы импульсов мотонейронов разгибателей и сгибателей, примерно соответствующие наблюдаемым при естественной ходьбе. Поскольку такая импульсация не сопровождается движениями, ее называют ложной локомоцией. Она обеспечивается пока еще не идентифицированными локомоторными центра-ми спинного мозга. По-видимому, для каждой конечности существует один такой центр. Активность центров координируется проприоспинальными системами и трактами, пере-секающими спинной мозг в пределах отдельных сегментов.

Предполагают, что у человека тоже есть спинальные локомоторные центры. По-видимому, их активация при раздражении кожи проявляется в виде шагательного рефлекса новорожденного. Однако по мере созревания центральной нервной системы вышестоящие отделы, очевидно, настолько подчиняют себе такие центры. что у взрослого человека они утрачивают способность к самостоятельной активности. Тем не менее, активизация локомоторных центров путем интенсивной тренировки лежит в основе различных методик восстановления ходьбы у больных с повреждением спинного мозга.

Таким образом, даже на уровне спинного мозга обеспечиваются запрограммированные (автоматические) двигательные акты. Подобные независимые от внешней стимуляции двигательные программы шире представлены в высших двигательных центрах. Некоторые из них (например, дыхание) врожденные, другие же (например, езда на велосипеде) приобретаются в процессе научения

Центральная нервная система. Белое вещество ЦНС состоит из длинных, покрытых белым миэлином, аксонов клеток и нейроглии. Тела этих клеток лежат в сером веществе или в ганглиях вне ЦНС. Будучи проводящей системой мозга, белое вещество осуществляет двусторонние связи между различными участками мозга, создавая таким образом ЦНС. В проводящих путях мозга волокна нервных клеток объединяются в пучки.

 

Таблица 11. Центральная нервная система

 

Нервная система Головной мозг Спинной мозг
большие полушария мозжечок ствол
Состав и строение Доли: лобная, те-менная, затылочная, две височные. Кора образована серым ве-ществом - телами нервных клеток. Тол-щина коры 1,5-3 мм Площадь коры - 2-2.5 тыс см2, она состоит из 14 млрд. тел нейронов. Белое ве-щество образовано нервными отростками Серое вещество образует кору и ядра внутри мозжечка Состоит на двух полушарий, соеди-ненных мостом Образован: 1. Промежуточным моз-гом 2. Средним мозгом 3. Мостом 4. Продолговатым моз-гом. Состоит из белого ве-щества, в толще нахо-дятся ядра серого ве-щества. Ствол переходит в спинной мозг Цилиндрический тяж 42- 45 см длиной и около 1 см диаметром. Проходит в позвоночном канале. Внутри него находится спинно-мозговой канал, заполненный жидкостью. Серое вещество распо-ложено внутри, белое - снаружи. Переходит в ствол головного мозга, образуя единую систему
Функции Осуществляет выс-шую нервную дея-тельность (мышление, речь, вторая сигналь-ная система, память, воображение, способ-ность писать, читать) Связь с внешней сре-дой происходит с по-мощью анализаторов, находящихся в заты-лочной доле (зритель-ная зона), в височной доле (слуховая зона), вдоль центральной бо-розды (кожно-мышеч-ная зона) и на внут- Регулирует и координирует дви-жения тела, мышеч-ный тонус Осущест-вляет безусловно-ре-флекторную деятель-ность (центры врож-денных рефлексов) Связывает головной мозг со спинным в еди-ную центральную нерв-ную систему. В продолговатом мозге находятся центры: ды-хательный, пищевари-тельный, сердечно-со-судистый. Мост свя-зывает обе половины мозжечка. Средний мозг контролирует реакции на внешние раздражители, тонус (напряжение) мышц. Функционирует под контролем головного мозга. Через него прохо-дят дуги безусловных (врожденных) рефлексов, осуществляющих возбуж-дение и торможение при движении. Проводящие пути белое вещество, соединяющее головной мозг со спинным; является проводником нервных импульсов. Регулирует работу внутренних орга-нов через периферическую нервную систему. Через
                 

 

 

Продолжение таблицы 11

Нервная система Головной мозг Спинной мозг
большие полушария мозжечок ствол
Функции ренней поверхности коры (вкусовая и обо-нятельная зоны). Регу-лирует работу всего организма через пери-ферическую нервную систему   Промежуточный мозг регулирует обмен веществ, температуру температуру тела, связывает рецепторы тела с корой больших полушарий спинно-мозговые нервы осуществляется управ-ление произвольными движениями тела

Головной мозг. Головной мозг состоит из больших полушарий (рис. 300-303) и ствола. Большие полушария в глубине соединены большой спайкой — мозолистым телом. В них различают лобную, теменную, височную, затылочную доли и островок. В полушариях находятся боковые желудочки мозга, подкорковые ядра, внутренняя капсула. Доли мозга отделены друг от друга глубокими бороздами, среди которых наиболее выражены три глубоких борозды: центральная (роландова). отделяющая лобную долю от теменной, латеральная (сильвиева), ограничивающая лобную и теменную доли от височной и теменно-затылочная, проходящая по внутренней поверхности полушария и отделяющая теменную долю от затылочной. Наличие борозд и извилин значительно увеличивает общую площадь коры больших полушарий (до 2500 см), причем 2/3 поверхности находится в глубине борозд, а 1/3 — на поверхности полушарий. Головной мозг представляет собой расширенный передний конец спинного мозга. У человека это расширение настолько велико, что сходство со спинным мозгом в значительной степени замаскировано, но у низших животных структурное родство головного мозга со спинным ясно заметно.

 

Рисунок 300. Большой мозг (cerebrum). Проекция боковых желудочков на поверхность полу-шарий большого мозга. Вид сверху. I - лобная доля; 2 - центральная борозда; З - боковой желудочек; 4 - затылочная доля; 5 - задний рог бокового желудочка; 6 - IV желудочек; 7 -водопровод мозга; 8 - III желудочек; 9 - центральная часть бокового желудочка; 10 - нижний рог бокового желудочка; 11 - передний рог бокового желудочка.

Рисунок 301. Головной мозг (cerebrum). Сагиттальный разрез. Вид с медиальной стороны.
I - полушарие большого мозга; 2 - мозолистое тело; 3 - передняя (белая) спайка; 4 - свод мозга; 5 - гипофиз; 6 - полость промежуточного мозга (III желудочек); 7 - таламус; 8 - эпифиз мозга; 9 - средний мозг; 10 - мост; 11 - мозжечок; 12 - продолговатый мозг.


Рисунок 302. Верхне-латеральная поверхность полушария большого мозга. I - пред-центральная борозда; 2 - предцентральная извилина; 3 - центральная борозда; 4 - постц-ентральная извилина; 5 - верхняя теменная долька; 6 - внутритеменная борозда; 7 - нижняя теменная долька; 8 - угловая извилина; 9 - затылочной полюс; 10 - нижняя височная извилина; 11 - нижняя височная борозда; 12 - средняя височная извилина; 13 - верхняя височная извилина; 14 - латеральная борозда; 15 - глазничная часть; 16 - нижняя лобная извилина; 17 - нижняя лобная борозда; 18 - средняя лобная извилина; 19 - верхняя лобная борозда; 20 - верхняя лобная извилина.

Большие полушария мозга — самый передний (рис. 303) и наиболее крупный из отделов головного мозга — обладают совершенно иной функцией, заключающейся в регуляции приобретенных форм. поведения. В основе сложных психологических явлений сознания, умственной деятельности, памяти, понимания и истолкования ощущений лежит активность нейронов большого мозга. Значение больших полушарий у различных животных можно изучать, удаляя их хирургическим путем. Лягушка после такой операции ведет себя почти в точности так же, как нормальная лягушка, а голубь с удаленной корой больших полушарий способен летать и, сидя на жердочке, сохранять равновесие, но склонен часами оставаться в покое. Под действием раздражения он двигается, хотя и бесцельно, как бы наудачу; так как он не способен есть предлагаемую пищу, то при отсутствии искусственного питания он может умереть с голоду. Собака после удаления коры больших полушарий способна ходить и проглатывать пищу, вложенную ей в рот, но не обнаруживает никаких проявлений страха или возбуждения. У человека иногда рождаются младенцы с неразвившейся корой больших полушарий, и, хотя они способны к осуществлению вегетативных функций дыхания и глотания, они ничему не научаются в результате опыта и не делают никаких произвольных движений. Такие дети обычно умирают вскоре после рождения.

Рисунок 303. Передний мозг. 1 - сильвиева борозда; 2 - центральная борозда; З - теменно-затылочная борозда; 4 - затылочная доля; 5 - мозжечок.

В больших полушариях сосредоточено несколько больше половины всех 10 млрд. нейронов, из которых состоит нервная система человека. Большие полушария развиваются как выросты переднего конца головного мозга. У человека и других млекопитающих они растут назад, поверх остальных частей мозга и прикрывая их. Каждое полушарие содержит полость, соединенную каналом с третьим желудочком (в таламусе). Это первый и второй мозговые желудочки; в них, как и в остальных желудочках, находятся сплетения кровеносных сосудов, выделяющих цереброспинальную жидкость. Большие полушария состоят из серого и белого вещества; белое вещество, образованное из нервных волокон, расположено внутри, тогда как серое вещество, состоящее из тел нервных клеток, находится на поверхности, образуя кору больших полушарий. Глубоко в веществе больших полушарий лежат другие массы серого вещества — нервные центры, служащие промежуточными станциями на пути в кору и из коры. У низших позвоночных, у которых серого вещества мало, поверхность больших полушарий гладкая, у человека же и у других млекопитающих она покрыта извилинами. Таким образом, получаются валики, разделенные бороздами, что увеличивает пространство, занимаемое серым веществом коры. Рисунок этих извилин одинаков у всех людей независимо от их умственных способностей. «География» коры больших полушарий подвергалась тщательному изучению. Представление о том, что определенные участки головного мозга имеют особые функции, возникло давно; еще «наука» френология основывалась на предположении, что функции в мозгу локализованы определенным образом и что если человек особо одарен в какой-либо области, то определенный участок мозга должен быть увеличен и вызывает образование шишки на голове. Думали, что анализ подобных «шишек» может показать, для какой деятельности больше всего пригоден данный человек.

Экспериментальные данные позволили установить, что функции в коре в значительной степени локализованы. Путем хирургического удаления у подопытных животных отдельных участков коры оказалось возможным строго локализовать многие функции; наблюдая параличи или потерю чувствительности у людей с повреждениями или опухолями головного мозга, а затем (после смерти больного) исследуя мозг и определяя локализацию поражения, удалось составить «карту» также и человеческого мозга. Во время операций на головном мозгу хирурги раздражали небольшие участки электрическим током и наблюдали, какие мышцы при этом сокращаются; поскольку мозговые операции могут производиться под местным обезбо-ливанием, больного можно было спросить, какие ощущения он испытывает при раздражении того или иного участка. Интересно, что в самом мозгу нет нервных окончаний, воспринимающих боль; поэтому раздражение коры безболезненно. Новейший метод изучения активности головного мозга состоит в измерении и регистрации электрических потенциалов, или волн, возникающих в различных участках мозга.

По наружной стороне полушария сверху вниз проходит легко распознаваемая глубокая борозда (роландова борозда), которая отделяет двигательную зону, контролирующую скелетные мышцы, от лежащей позади нее области, ответственной за ощущение тепла, холода, прикосновения и давления при раздражении рецепторов кожи. Внутри обеих зон имеет место дальнейшая специализация участков вдоль борозды (от верхушки мозга к его боковой стороне): нейроны верхнего участка контролируют мышцы ступни, клетки последующих участков — мышцы голени, бедра, живота и т.д., а нейроны нижнего участка управляют мышцами лица. Величина корковой двигательной зоны для той или иной части тела пропорциональна не количеству мышечной ткани, а тонкости и сложности движений; особенно обширны, например, зоны, управляющие кистью руки и лицом. Аналогичное соотношение существует между частями сенсорной зоны и участками кожи, с которых они получают импульсы. Таким образом, в связях между телом и головным мозгом мы наблюдаем не только перекрещивание волокон, в результате чего правая половина мозга контролирует левую половину тела — и наоборот, но и еще одну инверсию, в результате которой самый верхний участок коры управляет самыми нижними частями тела.

В головном мозге имеются нервные центры, управляющие собственно человеческими способностями: умом, речью, памятью и т.д. (рис. 304). Эти важные функции выполняются не всем головным мозгом, общий вес которого составляет всего 1,5 кг. Сигналы, передаваемые через нервные пути, поступают только в кору головного мозга, состоящую из серого вещества. Там же локализованы и чисто человеческие функции.

Чувствительная и двигательная зоны произвольных мышц находятся соответственно в лобной и теменной долях.

Нервные центры чувств расположены в конкретных долях, и рядом с каждым из них существует архив, или центр памяти. Например, центр зрительной памяти можно сравнить с фотографическим архивом, в котором имеется карточка с изображением и названием каждого известного нам предмета.

Некоторые умственные способности локализуются в лобных долях, у других нет точного местонахождения. Мышление и речь, то есть способность облекать мысли в слова, — чисто человеческие свойства.

Центр речинаходится в левом полушарии головного мозга, и именно в этом центре образуется понятие, выражаемое каждым словом. Другие близлежащие центры содержат «архивы» значения слов, «ищут» нужные нам слова для выражения того, что мы хотим сказать. Следующий шаг — это овеществление мысли через нервные импульсы, которые приводят в движение речеобразующие органы (устная речь) или управляют мышцами руки и кисти (письменная речь).

Во время сна организм восстанавливает энергию, израсходо-

Рисунок 304. ванную в течение дня; произвольные мышцы расслабляются, а некоторые непроизвольные, такие как дыхательные, замедляют свою работу. Однако покой нервной системы лишь частичен, так как продолжается работа головного мозга.

Эта деятельность отражается в сновидениях, которые бывают всегда, хотя проснувшись, их часто не помнят. Сны — это своего рода «отдушина» нашего подсознания.

Этот механизм состоит из различных этапов, в которых фазы «медленного» сна сменяются фазами «быстрого». Именно в фазах «быстрого» сна у нас бывают сновидения: если мы спим 8 часов, то видим сны в течение четырех или пяти фаз, продолжительностью 15-20 минут каждая.

Память — одна из главных функций головного мозга. Без нее мы не могли бы ничему научиться и не извлекли бы никакой пользы из опыта. Память не локализована в какой-либо конкретной зоне коры головного мозга. То, что мы усваиваем, рассредоточивается по бесчисленным взаимосвязанным нейронам.

Полагают, что память базируется в ядре нейронов, которые не претерпевают никаких изменений, когда информация хранится в кратковременной памяти(номер телефона, урок, который мы изучаем и т.д.), но подвергаются химическим изменениям при хранении информации в долговременной памяти(пережитый опыт, воспоминания и т. д.).

Существует связь между памятью и эмоциями, так как обычно мы помним лучше то, что нам приятно или, наоборот, то, что является очень неприятным. Механизм забываниядействует таким же образом: работает как защитная система, стирается то, что вызывает у нас страх или тревогу.

Головной и спинной мозг одеты тремя оболочками (рис. 305-307): твердой, паутинной и сосудистой. Твердая — наружная, соединительнотканная, выстилает внутреннюю полость черепа и позвоночного канала. Паутинная расположена под твердой — это тонкая оболочка с небольшим количеством нервов и сосудов. Сосудистая оболочка сращена с мозгом, заходит в борозды и содержит много кровеносных сосудов. Между сосудистой и паутинной оболочками образуются полости, заполненные мозговой жидкостью.

Рисунок 305. Твердая оболочка головного мозга (dura mater encephali). Синусы твердой оболочки. 1 - серп большого мозга; 2 - нижний сагиттальный синус; 3 - передний межпешеристый синус; 4 - клиновидно-теменной синус; 5 - задний межпещеристый синус; 6 -верхний каменистый синус; 7 - намет мозжечка; 8 - поперечный синус; 9 - синусный сток; 10 -сигмовидный синус; 11 - верхний сагиттальный синус; 12 - устья верхних мозговых вен.


Рисунок 306. Оболочки головного мозга на поперечном (фронтальном) paзpeзе. Взаимо-расположение оболочек и верхнего сагиттального синуса со сводом черепа и поверхностью головного мозга. 1 - твердая оболочка головного мозга; 2 - свод черепа; 3 - грануляции паутинной оболочки; 4 - верхний сагиттальный синус; 5 - кожа; 6 - эмиссарная вена; 7 -паутинная оболочка головного мозга; 8 - подпаутинное пространство; 9 - мягкая оболочка головного мозга; 10 - головной мозг; 11 - серп большого мозга.

Рисунок 307. Оболочки спинного мозга (meninges medullae spinalis) в позвоночном канале. По-перечный разрез на уровне межпозвоночного диска. I - твёрдая оболочка спинного мозга; 2 -эпидуральное пространство; 3 - паутинная оболочка; 4 - задний корешок спинномозговой нерва; 5 - передний корешок; 6 - спинномозговой узел; 7 - спинномозговой нерв; 8 - подпаутин-ное (субарахноидальное) пространство; 9 - зубчатая связка.


Рисунок 308. Нижняя поверхность (основание) головного мозга и места выхода корешков черепных нервов. I - обонятельная луковица; 2 - обонятельный тракт; 3 - переднее продырявленное вещество; 4 - серый бугор; 5 - зрительный тракт; 6 - сосцевидные тела; 7 -тройничный узел; 8 - заднее продырявленное вещество; 9 - мост; 10 - мозжечок; 11 - пирами-да; 12 - олива; 13 - спииномозровой нерв; 14 - подъязычный нерв; 15 - добавочный нерв; 16 -блуждающий нерв; 17 - языкоглоточный нерв; 18 - преддверно-улитковый нерв; 19 - лицевой нерв; 20 - отводящий нерв; 21 - тройничный нерв; 22 - блоковый нерв; 23 - глазодвигательный нерв; 24 - зрительный нерв; 25 - обонятельная борозда.

Рисунок 309. Медиальная и нижняя поверхности полушария большого мозга. 1 - свод; 2 -клюв мозолистого тела; 3 - колено мозолистого тела; 4 - ствол мозолистого тела; 5 - борозда мозолистого тела; 6 - поясная извилина; 7 - верхняя лобная извилина; 8 - подтеменная борозда; 9 - парацентральная долька; 10 - поясная борозда; 11 - предклинье; 12 - теменно-затылочная борозда; 13 - клин; 14 - шпорная борозда; 15 - язычная извилина; 16 - медиальная затылочно-височная извилина; 17 - затылочно-височная борозда; 18 - латеральная затылочно-височная извилина; 19 - борозда гиппокампа; 20 - парагиппокампальная извилина.

Рисунок 310. Островок (insula). Островковая доля. Вид с латеральной стороны. Часть те-менной и лобной долей удалена. Височная доля оттянута книзу. 1 - островок; 2 - пред-центральная борозда; 3 - круговая борозда островка; 4 - верхняя лобная извилина; 5 - верхняя лобная борозда; 6 - средняя лобная извилина; 7 - нижняя лобная борозда; 8 - лобный (передний) полюс; 9 - короткие извилины островка; 10 - порог островка; 11 - височный полюс; 12 - верхняя височная извилина; 13 - верхняя височная борозда; 14 - средняя височная извилина; 15 - длинная извилина островка; 16 - латеральные затылочные извилины; 17 - затылочный (задний) полюс; 18 - угловая извилина; 19 - верхняя теменная долька; 20 - надкраевая извилина; 21 - внут-ритеменная борозда; 22 - постцентральная борозда; 23 - постцентральная извилина; 24 -центральная борозда; 25 - предцентральная извилина.

Продолговатый мозг (рис. 311) — это самый задний отдел головного мозга, лежащий

Рисунок 311. Продолговатый мозг (medulla oblongata ). Поперечный разрез на уровне олив. I -четвертый желудочек; 2 - дорсальное ядро блуждающего нерва; 3 - ядро вестибулярного нерва; 4 - ядро одиночного пути; 5 - задний (дорсальный) спинно-мозжечковый путь; 6 -спинномозговое ядро тройничного нерва; 7 - спинно-мозговой путь тройничного нерва; 8 - ядро подъязычного нерва; 9 - оливное ядро; 10 - олива; 11 - корково-спинномозговой путь (пирамидный); 12 - медиальная петля; 13 - подъязычный нерв; 14 - передние наружные дуговые волокна; 15 - двойное ядро; 16 - спинно-таламический и спинно-покрышечный пути; 17 -блуждающий нерв; 18 - вентральпый (передний) спинно-мозжечковый путь.

 

непосредственно спереди от спинного мозга. Здесь центральный канал спинного мозга расширяется и образует большую полость, называемую четвертым мозговым желудочком (три остальных желудочка находятся выше, в передних отделах головного мозга). Крыша четвертого желудочка тонка и содержит сплетение кровеносных сосудов, выделяющих часть цереброспинальной жидкости; остальную часть этой жидкости выделяют аналогичные сплетения, находящиеся в других желудочках. В крыше четвертого желудочка имеется три крошечных отверстия, через которые цереброспинальная жидкость выходит в пространства между мозговыми оболочками. Стенки продолговатого мозга толстые и состоят главным образом из нервных путей, идущих к высшим отделам головного мозга. В сером веществе продолговатого мозга залегают жизненно важные центры, регулирующие сердечную деятель-ность, дыхание, глотание, осуществляющие защитные рефлексы (чихание, кашель, рвота, слезоотделение), секрецию слюны, желудочного и поджелудочного сока и др. Повреждение продолговатого мозга может быть причиной смерти вследствие прекращения сердечной деятельности и дыхания.

Над продолговатым мозгом расположен мозжечок (рис. 312, 313), состоящий из средней

Рисунок 312. Мозжечок (cerebellum). Вид сверху. 1 - червь мозжечка; 2 - полушарие мозжечка; 3 - щели (борозды) мозжечка; 4 - листки мозжечка; 5 - горизонтальная щель; 6 -задняя вырезка мозжечка; 7 - нижняя полулунная долька; 8 - верхняя полулунная долька; 9 -четырехугольная долька; 10 - нижние холмики крыши среднего мозга; 11 - верхний холмик; 12 -эпифиз; 13 - таламусы; 14 - третий желудочек.


части и двух боковых полушарий, по форме напоминающих сосновые шишки. Серый поверхностный слой мозжечка состоит из тел нервных клеток, а глубже находится масса белой ткани, образованной волокнами, связывающими мозжечок с продолговатым мозгом и с высшими отделами мозга. Весь мозжечок представлен двумя полушариями, средней частью - червем и тремя парами ножек, образованных нервными волокнами, с помощью которых он связан с другими отделами головного мозга. Основная функция мозжечка — безусловно-рефлекторная координация движений, определяющая их четкость, плавность и сохранение равновесия тела, а также поддержание тонуса мышц. Через спинной мозг по проводящим путям импульсы от мозжечка поступают к мышцам. Контролирует деятельность мозжечка кора больших полушарий.

Величина мозжечка у различных животных приблизительно соответствует их двигательной активности. Мозжечок координирует движения и регулирует сокращение мышц; поэтому у таких чрезвычайно активных животных, как птицы, он относительно велик. Удаление или повреждение мозжечка не сопровождается параличом, но ведет к расстройству мышечной координации. Птица после хирургического удаления мозжечка не способна летать, она может только беспорядочно хлопать крыльями. При повреждении мозжечка у человека вследствие травм или заболевания все движения становятся некоординированными и действия, требующие тонкого согласования движений, например, вдевание нитки в иголку, оказываются невоз-можными.

Рисунок 313. Мозжечок (cerebellum), средний мозг (mesencephalon) и промежуточный мозг (diencephalon). Вид сверху. Полушария большого мозга удалены. Мозжечок вскрыт горизонтальным разрезом, проведенным на уровне горизонтальной щели мозжечка. 1 -мозжечково-красноядерный путь; 2 - ядро шатра; 3 - червь (мозжечка); 4 - шаровидное ядро; 5 - пробковидное ядро; 6 - мозговое тело (мозжечка); 7 - ворота зубчатого ядра; 8 - белые пластинки; 9 - зубчатое ядро; 10 - верхняя мозжечковая ножка; 11 - уздечка верхнего мозгового паруса; 12 - нижний холмик (среднего мозга); 13 - верхний холмик; 14 - эпифиз мозга (шишковидное тело); 15 - треугольник поводка; 16 - таламус; 17 - третий желудочек.

 

Задний мозг включает варолиев мост и мозжечок. Варолиев мост (рис. 314) снизу ограничен

Рисунок 314. Mocт (pons). Поперечный разрез на уровне верхнего мозгового паруса. 1 -верхний мозговой парус; 2 - верхняя мозжечковая ножка; 3 - задний продольный пучок; 4 -центральный покрышечный путь; 5 - латеральная петля; 6 - медиальная петля; 7 - продольные волокна моста (пирамидный путь); 8 - отводящий нерв; 9 - ядро лицевого нерва; 10 - ядро отводящего нерва; 11 - лицевой нерв; 12 - тройничный нерв; 13 - двигательное ядро трой-ничного нерва; 14 - верхнее слюноотделительное ядро; 15 - мостовое ядро тройничного нерва; 16 - ядро одиночного пути; 17 - IV желудочек.

продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка. В веществе варолиева моста находятся ядра с V по VIII пары черепно-мозговых нервов (тройничный, отводящий, лицевой, слуховой). Варолиев мост проводит импульсы из одного полушария мозжечка в другое, координируя движения мышц на обеих сторонах тела.

Средний мозг (рис. 315) расположен впереди варолиева моста, он представлен четверо-холмием и ножками мозга. В центре его проходит узкий канал, (водопровод мозга), который соединяет III и IV желудочки. Мозговой водопровод окружен серым веществом, в котором лежат ядра III и IV пар черепно-мозговых нервов. В ножках мозга продолжаются проводящие пути от продолговатого мозга и; варолиева моста к большим полушариям. Средний мозг играет важную роль в регуляции тонуса и в осуществлении рефлексов, благодаря которым возможны стояние иходьба. Чувствительные ядра среднего мозга находятся в буграх четверохолмия: в верхних заключены ядра, связанные с органами зрения, в нижних — ядра, связанные с органами слуха. При их участии осуществляются ориентировочные рефлексы на свет и звук. Средний мозг содержит также группу нервных клеток, регулирующих мышечный тонус и позу.

Рисунок 315. Средний мозг (mesencephalon). Поперечный разрез. 1 - крыша среднего мозга; 2 - покрышка среднего мозга; 3 - основание ножки мозга; 4 - красное ядро; 5 - черное вещест-во; 6 - ядро глазодвигательного нерва; 7 - добавочное ядро глазодвигательного нерва; 8 -иерекрест покрышки; 9 - глазодвигательный нерв; 10 - лобно-мостовой путь; 11 - корково-ядерный путь; 12 - корково-спинномозговой путь; 13 - затылочно-височно-теменно-мостовой путь; 14 - медиальная петля; 15 - ручка нижнего холмика; 16 - ядро спинномозгового пути тройничного нерва; 17 - верхний холмик; 18 - водопровод среднего мозга; 19 - центральное серое вещество.

 

Кпереди от среднего мозга центральный канал снова расширяется и образует третий мозговой желудочек, крыша которого содержит еще одно сплетение кровеносных сосудов, выделяющих цереброспинальную жидкость. Толстые стенки третьего желудочка образуют таламус. Это центр переключения сенсорных импульсов; волокна из спинного мозга и низших отделов головного мозга образуют здесь синапсы с другими нейронами, идущими к различным сенсорным зонам больших полушарий. Таламус, по-видимому, регулирует и координирует также внешние проявления эмоций; так, раздражая таламус у кошки, можно вызвать у нее все внешние признаки ярости: шерсть становится дыбом, кошка выпускает когти, выгибает спину горбом и обнаруживает другие признаки враждебности. Но стоит только прекратить раздра-жение, и проявления ярости исчезают.

Таламус (рис. 317) представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму. Передний отдел его примыкает к межжелудочковому отверстию, задний, расширенный, — к четверохолмию. Латеральная поверхность таламуса срастается с полушариями и граничит с хвостатым ядром и внутренней капсулой. Медиальные поверхности образуют стенки III желудочка. Нижняя продолжается в гипоталамус. В таламусе различают три основные группы ядер: передние, латеральные и медиальные. В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий. В эпиталамусе лежит верхний придаток мозга — эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши. Метаталамус представлен медиальными и латеральными коленчатыми телами, соединенными пучками волокон (ручки холмиков) с верхними (латеральные) и нижними (медиальные) холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха.

Гипоталамус (рис. 316) располагается вентральнее зрительного бугра и включает в себя

Рисунок 316. Гипоталамус (hypothalamus; подбугорье) и гипофиз (hypophisis) на сагиттальном разрезе. Ядра гипоталамуса. 1 - передняя спайка; 2 - гипоталамическая борозда; 3 - околожелудочковое ядро; 4 - верхнемедиальное ядро; 5 - заднее ядро; 6 - серо-бугорные ядра; 7 - ядро воронки; 8 - углубление воронки; 9 - воронка гипофиза; 10 - задняя доля гипофиза; 11 - промежуточная доля гипофиза; 12 - передняя доля гипофиза; 13 - зрительный перекрест; 14 - надзрительное ядро (супраоптическое); 15 - переднее гипоталамическое ядро; 16 - терминальная пластинка.

 

собственно подбугорную область и ряд образований, расположенных на основании мозга. Сюда относятся; конечная пластинка, зрительный перекрест, серый бугор, воронка с отходящим от нее нижним придатком мозга — гипофизом и сосцевидные тела. В гипоталамической области расположены ядра (рис. 317, 318) (надзрительное, околожелудоч-ковое и др.), содержащие крупные нервные клетки, способные выделять секрет (нейросекрет), поступающий по их аксонам в заднюю долю гипофиза, а затем в кровь. В заднем отделе гипоталамуса лежат ядра, образованные мелкими нервными клетками, которые связаны с передней долей гипофиза особой системой кровеносных сосудов.

Третий желудочек расположен (рис. 317) по средней линии и представляет собой узкую вертикальную щель. Боковые стенки его образованы зрительными буграми и подбугорной областью, передняя — столбами свода и передней спайкой, нижняя — образованиями гипоталамуса и задняя — ножками мозга и надбугорной областью. Верхняя стенка — крыша III желудочка, — самая тонкая и состоит из мягкой (сосудистой) оболочки мозга, выстланной со стороны полости желудочка эпителиальной пластинкой (эпендимой). Отсюда в полость желудочка вдавливается большое количество кровеносных сосудов и образуется сосудистое сплетение. Спереди III желудочек сообщается с боковыми желудочками (I и II) межжелудочковыми отверстиями, а сзади переходит в мозговой водопровод.

Рисунок 317. Базальные (подкорковые) узлы (nuclei basales) на фронтальном разрезе головного мозга, разрез сделан на уровне сосцевидных тел. 1 - сосудистое сплетение бокового желудочка (центральная часть); 2 - таламус; 3 - внутренняя капсула; 4 - кора островка; 5 -ограда; 6 - миндалевидное тело; 7 - зрительный тракт; 8 - сосцевидное тело; 9 - бледный шар; 10 - скорлупа; 11 - свод мозга; 12 - хвостатое ядро; 13 - мозолистое тело.

 


Рисунок 318. Базальные (подкорковые) узлы (nuclei basales) и внутренняя капсула (capsula interna) на горизонтальном разрезе головного мозга. Вид сверху. 1 - кора большого мозга (плащ); 2 - колено мозолистого тела; 3 - передний рог бокового желудочка; 4 - внутренняя капсула; 5 - наружная капсула; 6 - ограда; 7 - самая наружная капсула; 8 - скорлупа; 9 - блед-ный шар; 10 - III желудочек; II - задний рог бокового желудочка; 12 - thalamus (зрительный бугор); 13 - корковое вещество (кора) островка; 14 - головка хвостатого ядра; 15 - полость прозрачной перегородки.

 


Рисунок 319. Боковые желудочки (ventriculi laterales) и сосудистая основа третьего желудочка (tela chorioidea ventriculi tertii). Вид сверху. Мозолистое тело и тело свода мозга перерезаны и отвернуты кзади. I - передний рог бокового желудочка; 2 - хвостатое ядро; 3 -сосудистое сплетение в центральной части правого бокового желудочка; 4 - ножки гиппо-кампа; 5 - сосудистое сплетение в нижнем роге бокового желудочка; 6 - коллатеральное возвышение; 7 - птичья шпора; 8 - луковица заднего рога; 9 - мозолистое тело; 10 - тело свода; 11 - ножка свода; 12 - спайка свода; 13 - ворсинчатая артерия; 14 - большая мозговая вена; 15 - внутренняя мозговая вена; 16 - верхняя таламостриарная вена; 17 - сосудистая основа третьего желудочка; 18 - столбы свода; 19 - пластинки прозрачной перегородки; 20 -полость прозрачной перегородки.


Рисунок 320. Свод (fornix) и гиппокамп (hippocampus). Вид сверху и несколько сбоку. 1 -мозолистое тело; 2 - тело свода; 3 - ножка свода; 4 - передняя спайка; 5 - столб свода; 6 -сосцевидное тело; 7 - бахромка гиппокампа; 8 - крючок; 9 - зубчатая извилина; 10 - парагиппокаммальная извилина; 11 - ножка гиппокампа; 12 - гиппокамп; 13 - боковой же- дудочек (вскрыт); 14 - бахромка гиппокампа; 15 - птичья шпора; 16 - спайка свода; 17 - ножка свода.


На дне третьего желудочка (в гипоталамусе) находятся центры, регулирующие температуру тела, аппетит, водный баланс, углеводный и жировой обмен, кровяное давление и сон. Интересно, что передняя часть гипоталамуса вступает в действие при повышении температуры, а задняя — при понижении. Гипоталамус контролирует некоторые функции передней доли гипофиза, например секрецию гонадотропных гормонов, и вырабатывает гормоны, которые выделяет в кровь задняя доля гипофиза.

Промежуточный мозг занимает в стволе самое высокое положение и лежит кпереди от ножек мозга. Состоит из двух зрительных бугров, надбугорной, подбугорной области и коленчатых тел. По периферии промежуточного мозга находится белое вещество, а в его толще — ядра серого вещества. Зрительные бугры главные подкорковые центры чувстви-тельности: сюда по восходящим путям поступают импульсы со всех рецепторов тела, а отсюда — к коре больших полушарий. В подбугорной части (гипоталамус) находятся центры, сово-купность которых представляет собой высший подкорковый центр вегетативной нервной системы, регулирующий обмен веществ в организме, теплоотдачу, постоянство внутренней среды. В передних отделах гипоталамуса располагаются парасимпатические центры, в задних — симпатические. В ядрах коленчатых тел сосредоточены подкорковые зрительные и слуховые центры.

К коленчатым телам направляется II пара черепно-мозговых нервов — зрительные. Ствол мозга связывают с окружающей средой и с органами тела черепно-мозговые нервы. По своему характеру они могут быть чувствительными (I, II, VIII пары), двигательными (III, IV, VI, XI, XII пары) и смешанными (V, VII, IX, Х пары) (рис. 323, 324, табл. 12).

Рисунок 321. Четвертый желудочек (venticulus quartis) и сосудистая основа четвертого желудочка (tela chorioidea ventriculi quarti). Вид сверху. 1 - язычок мозжечка; 2 - верхний мозговой парус; 3 - четвертый желудочек; 4 - средняя ножка мозжечка; 5 - сосудистое сплетения четвертого желудочка; 6 - бугорок клиновидного ядра; 7 - бугорок тонкого ядра; 8 -задняя промежуточная борозда; 9 - клиновидный пучок; 10 - боковой (латеральный) канатик; 11 - тонкий пучок; 12 - задняя срединная борозда; 13 - задняя латеральная борозда; 14 - сре-динное отверстие (апертура) четвертого желудочка; 15 - сосудистая основа четвертого желудочка; 16 - верхняя (передняя) ножка мозжечка; 17 - блоковый нерв; 18 - нижний холмик (крыши среднего мозга); 19 - уздечка верхнего мозгового паруса; 20 - верхний холмик (крыши среднего мозга).

Ствол мозга. Условной границей между полушариями и стволом являются зрительные бугры. В стволе мозга выделяют 5 образований: зрительные бугры, ножки мозга, мост, продолговатый мозг, мозжечок. Ствол мозга имеет много общего со спинным мозгом: двигательные ядра черепных нервов являются гомологами передних рогов спинного мозга, чувствительные — задних рогов спинного мозга. В стволе мозга выделяют основание, где проходят главным образом проводящие пути, и покрышку, где расположены ядра черепных нервов и ретикулярная формация.

Дорсально мост и продолговатый мозг образуют дно IV желудочка (рис. 321), которое имеет форму ромба. Верхние стороны ромба ограничены верхними ножками мозжечка, нижние стороны — нижними ножками мозжечка. Спереди IV желудочек, сужаясь, переходит в сильвиев водопровод, через который он сообщается с III желудочком; каудально IV желудочек переходит в центральный канал спинного мозга. Крыша IV желудочка образуется тонкими пластинками — нижним и верхним мозговым парусом. Дорсальнее расположен мозжечок. Сверху он отделен от затылочных долей больших полушарий мозжечковым наметом.

Рассмотренные отделы головного мозга управляют врожденными, автоматическими форма-ми поведения, которые определяются существенными чертами строения этих отделов; это строение в основном одинаково у всех позвоночных — от рыб до человека.

Рисунок 322. Ромбовидная ямка (fossa rhomboidea). Задняя поверхность моста и продолговатого мозга, проекция ядер черепных нервов на ромбовидную ямку. 1 - добавочное (парасимпатическое) ядро (я.) глазодвигательного нерва; 2 - я. глазодвигательного нерва; 3 - я. блокового нерва; 4 - я. среднемозгового пути тройничного нерва; 5 - двигательное я. тройничного нерва; 6 - мостовое я. тройничного нерва; 7 - я. отводящего нерва; 8 - я. лицевого нерва; 9 - яя. преддверно-улиткового нерва; 10 - корешок лицевого нерва (VII пара); 1I - верхнее и нижнее слюноотделительные яя.; 12 - преддверно-улитковый нерв (VIII пара); 13 -языкогло-точннй нерв (IX пара); 14 - я. подъязычного нерва; 15 - блуждащий нерв (X пара); 16 - двойное ядро; 17 - я. спинномозгового пути тройничного нерва; 18 - добавочный нерв (XI пара); 19 - ядро одиночного пути; 20 - дорсальное я. блуждающего нерва; 21 - спинномозговое я. доба-вочного нерва; 22 - задвижка; 23 - задняя срединная борозда; 24 - тонкий пучок; 25 - клино-видный пучок; 26 - бугорок тонкого я.; 27 - треугольник блуждающего нерва; 28 - срединная борозда ромбовидной ямки; 29 - мозговые полоски; 30 - нижний мозговой парус (отвернут); 31 - преддверное поле; 32 - средняя ножка мозжечка; 33 - лицевой бугорок; 34 - верхняя ножка мозжечка; 35 - срединное возвышение; 36 - верхний мозговой парус (отвернут).


Рисунок 323. Места выхода черепных нервов из полости черепа. Вид сверху. На правой стороне внутреннего основания черепа твердая оболочка головного мозга удачена. На левой стороне вскрыты поперечный синус и месторасположения полулунного узла тройничного нерва. 1 - решетчатая пластинка решетчатой кости (через отверстия пластинки проходят обонятельные нервы); 2 - зрительный нерв; 3 - внутренняя сонная артерия; 4 - глазо-двигательный нерв; 5 - блоковый нерв; 6 - глазничный нерв (первая ветвь тройничного нерва); 7 - верхнечелюстной нерв (вторая ветвь тройничного нерва); 8 - отводящий нерв; 9 - нижнече-люстной нерв (третья ветвь тройничного нерва); 10 - тройничный нерв; 11 - лицевой нерв; 12 - преддверно-улитковый нерв; 13 - языкоглоточный нерв; 14 - блуждающий нерв; 15 -подъязычный нерв; 16 - борозда сигмовидного синуса; 17 - добавочный нерв; 18 - спинной мозг; 19 - 6орозда поперечного синуса; 20 - верхний сагиттальный синус; 21 - прямой синус; 22 -поперечный синус (вскрыт); 23 - затылочный синус; 24 - сигмовидный синус; 25 - твердая оболочка головного мозга (отрезана и отвернута влево); 26 - тройничный узел; 27 - воронка гипоталамуса; 28 - обонятельный тракт; 29 - обонятельная луковица.

 

 

 

Рисунок 324. Черепномозговые нервы.

 

Т аблица 12. Черепномозговые нервы человека

 

№ пары Название Места окончаний чувствитеяьных волокон Эффекторы, иннервируемые двигателышми волокнами
I Обонятельный Обонятельный эпителий носа (обоняние) ---------------
II Зрительный Сетчатка глаза (зрение) ---------------
III Глазодвигательный Проприоцепторы мышц глазного яблока (мышечное чувство) Мышцы, двигающие глазное яблоко (совместно с IV и VI парами); мышцы, изменяющие форму хрусталика; мышцы, сужающие зрачок
IV Блоковый То же Другие мышцы, двигающие глазное яблоко
V Тройничный Зубы и кожа лица Некоторые из жевательных мышц
VI Отводящий Проприодепторы мышц глазного яблока (мышечное чувство) Другие мышцы, двигающие глазное яблоко
VII Лицевой Вкусовые почки передней части языка Мышцы лица; подчелюстные и подъязычные железы
VIII Слуховой Улитка (слух) и полукружные каналы (чувство равновесия, поступательного движения и вращения) Околоушная железа; мышцы глотки, используемые при глотании
IX Языко-глоточный Вкусовые почки задней трети языка; слизистая глотки ---------------
Х Блуждающий Нервные окончания во многих Внутренних органах: легких, желудке, аорте. гортани Парасимпатические волокна, идущие к сердцу, жедудку, тонким кишкам, гортани, пищеводу
ХI Добавочный Мышцы плеча (мышечное чувство) Мышцы плеча
ХII Подъязычный Мышцы языка (мышечное чувство) Мышцы языка

Проводящие пути головного и спинного мозга. Системы нервных волокон, проводящих импульсы от кожи и слизистых оболочек, внутренних органов и органов движения к различным отделам спинного и головного мозга, в частности к коре полушарий большого мозга, называются восходящими, или чувствительными, афферентными, проводящими путями. Системы нервных волокон, передающих импульсы от коры или нижележащих ядер головного мозга через спинной мозг к рабочему органу (мышце, железе и др.), называются двигательными, или нисходящими, эфферентными, проводящими путями.

Проводящие пути образованы цепями нейронов, причем чувствительные пути обычно состоят из трех нейронов, а двигательные — из двух. Первый нейрон всех чувствительных путей располагается всегда вне мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Последний нейрон двигательных путей всегда представлен клетками передних рогов серого вещества спинного мозга или клетками двигательных ядер черепных нервов.

Чувствительные пути. Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей).

Основная масса восходящих путей проводит проприоцептивную чувствительность. Это говорит о важности контроля движений, так называемой обратной связи, для двигательной функции организма. Путь болевой и температурной чувствительности — латеральный спиноталамический путь. Первым нейроном этого пути являются клетки спинномозговых узлов. Периферические отростки их входят в состав спинномозговых нервов. Центральные отростки образуют задние корешки и идут в спинной мозг, оканчиваясь на клетках задних рогов (2-й нейрон).

Отростки вторых нейронов через комиссуру спинного мозга переходят на противоположную сторону (образуют перекрест) и поднимаются в составе бокового канатика спинного мозга в продолговатый мозг. Там они примыкают к медиальной чувствительной петле и идут через продолговатый мозг, мост и ножки мозга к латеральному ядру таламуса, где переключаются на 3-й нейрон. Отростки клеток ядер таламуса образуют таламокортикальный пучок, проходящий через заднюю ножку внутренней капсулы к коре постцентральной извилины (область чувствительного анализатора). В результате того что волокна по пути перекрещиваются, импульсы от левой половины туловища и конечностей передаются в правое полушарие, а от правой половины — в левое.

Передний спиноталамический путь состоит из волокон, проводящих тактильную чувствительность, он проходит в переднем канатике спинного мозга.

Пути мышечно-суставной (проприоцептивной) чувствительности направляются к коре полушарий большого мозга и в мозжечок, который участвует в координации движений. К мозжечку идут два спиномозжечковых пути — передний и задний. Задний спиномозжечковый путь (Флексига) начинается от клетки спинномозгового узла (1-й нейрон). Периферический отросток входит в состав спинномозгового нерва и заканчивается рецептором в мышце, капсуле суставов или связках.

Центральный отросток в составе заднего корешка входит в спинной мозг и заканчивается в клетках ядра, расположенного у основания заднего рога (2-й нейрон). Отростки вторых нейронов поднимаются в дорсальной части бокового канатика этой же стороны и через нижние ножки мозжечка идут к клеткам коры червя мозжечка. Волокна переднего спиномозжечкового пути (Говерса) образуют перекрест дважды; в спинном мозге и в области верхнего паруса, а затем через верхние ножки мозжечка достигают клеток коры червя мозжечка.

Проприоцептивный путь к коре больших полушарий представлен двумя пучками: нежным (тонким) и клиновидным. Нежный пучок (Голля) проводит импульсы от проприорецепторов нижних конечностей и нижней половины тела и лежит медиально в заднем канатике. Клиновидный пучок (Бурдаха) примыкает к нему снаружи и несет импульсы от верхней половины туловища и от верхних конечностей. Второй нейрон этого пути лежит в одноименных ядрах продолговатого мозга. Их отростки образуют перекрест в продолговатом мозге и соединяются в пучок, называемый медиальной чувствительной петлей. Она доходит до латерального ядра таламуса (3-й нейрон). Отростки третьих нейронов через внутреннюю капсулу направляются в чувствительную и частично двигательную зоны коры.

Двигательные пути представлены двумя группами.

1. Пирамидные (кортико-спинальный и кортико-ядерный, или кортико-бульбарный) пути, проводящие импульсы от коры к двигательным клеткам спинного и продолговатого мозга, являющиеся путями произвольных движений.

2. Экстрапирамидные, рефлекторные двигательные пути, входящие в состав экстрапирамидной системы.

Пирамидный, или кортико-спинальный путь начинается от больших пирамидных клеток (Беца) коры верхних 2/3 предцентральной извилины и околоцентральной дольки, проходит через внутреннюю капсулу основание ножек мозга, основание моста, пирамиды продолго-ватого мозга. На границе со спинным мозгом он разделяется на боковой и передний пирамид-ные пучки. Боковой (большой) образует перекрест и спускается в боковом канатике спинного мозга, заканчиваясь на клетках переднего рога. Передний не перекрещивается и идет в переднем канатике. Образуя посегментный перекрест, его волокна также заканчиваются на клетках переднего рога. Отростки клеток переднею рога образуют передний корешок, двигательную порцию спинномозгового нерва и заканчиваются в мышце двигательным окончанием.

Кортико-ядерный путь начинается в нижней трети предцентральной извилины, идет через колено (изгиб) внутренней капсулы и заканчивается на клетках двигательных ядер черепных нервов противоположной стороны. Отростки клеток двигательных ядер образуют двигательную порцию соответствующего нерва.

К рефлекторным двигательным путям (экстрапирамидным) относятся красноядерно-спинномозговой (руброспинальный) путь — от клеток красного ядра среднего мозга, тектоспиналъный путь — от ядер холмиков пластинки крыши среднего мозга (четверохолмия), связанный со слуховыми и зрительными восприятиями, и вестибуло-спинальный — от вестибулярных ядер из ромбовидной ямки, связанный с поддержанием равновесия тела.

Спинной мозг (рис. 325- 327).

 

 

Рисунок 325. Спинной мозг (medulla spinalis) с корешками спинномозговых нервов. 1 - ромбо-видная ямка (головного мозга); 2 - корешки спинномозговых нервов; 3 - шейное утолщение спинного мозга; 4 - задняя срединная борозда; 5 - спинномозговые нервы; 6 - твердая оболочка спинного мозга; 7 - зубчатая связка; 8 - поясничное утолщение спинного мозга; 9 - конус спинного мозга; 10 - «конский хвост» (корешки поясничных и крестцовых спинно-мозговых нервов); 11 - концевая (терминальная) нить.

Спинной мозг взрослого человека размещается в позвоночном канале и представляет собой белый цилиндрический тяж длиной 40-45 см и общей массой 34-38 г. По передней и задней поверхности спинного мозга расположены продольные борозды, в центре проходит спинно-мозговой канал, вокруг которого сосредоточено серое вещество скопление огромного количества нервных клеток, образующих контур бабочки. По наружной поверхности тяжа спинного мозга расположено белое вещество — скопление пучков из длинных отростков нервных клеток.

Спинной мозг человека содержит два утолщения: шейное и поясничное — которые начинают формироваться в первые годы развития ребенка. Шейное утолщение связано с регуляцией движения верхних конечностей, поясничное — нижних. В процессе постнатального развития формирование шейного и поясничного утолщений связано с двигательной активностью ребенка, что свидетельствует о важной роли движений как фактора развития и совершенствования нервной системы.

В сером веществе различают передние, задние и боковые рога. В передних рогах залегают двигательные нейроны, в задних — вставочные, которые осуществляют связь между чувствительными и двигательными нейронами. Чувствительные нейроны лежат вне тяжа, в спинномозговых узлах по ходу чувствительных нервов.От двигательных нейронов передних рогов отходят длинные отростки — передние корешки, образующие двигательные нервные волокна. К задним рогам подходят аксоны чувствительных нейронов, формирующие задние корешки, которые поступают в спинной мозг и передают возбуждение с периферии в спинной мозг. Здесь возбуждение переключается на вставочный нейрон, а от него — на короткие отростки двигательного нейрона, с которого затем по аксону оно сообщается рабочему органу.

Рисунок 326. Топография сегментов спинного мозга в позвоночном канале. 1 - шейный отдел (сегменты С1-С8); 2 - грудной отдел (Th1-Th12); 3 - поясничный отдел (L1-L5); 4 - крестцовый отдел (S1-S5); 5 - копчиковый отдел (Со1-Со3).

Рисунок 327. Спинной мозг (medulla spinalis) на поперечном разрезе. I - мягкая оболочка спинного мозга; 2 - задняя срединная борозда; 3 - задняя промежуточная борозда; 4 - задний корешок спинномозгового нерва; 5 - задне-боковая борозда; 6 - пограничная зона; 7 - губчатый слой (губчатая зона); 8 - студенистое вещество; 9 - задний рог спинного мозга; 10 - боковой рог; 11 - зубчатая связка; 12 - передний рог спинного мозга; 13 - передний корешок спинно-мозгового нерва; 14 - передняя спинномозговая артерия; 15 - передняя срединная щель.

 

В межпозвоночных отверстиях двигательные и чувствительные корешки соединяются, образуя смешанные нервы, которые затем распадаются на передние и задние ветки. Каждая из них состоит из чувствительных и двигательных нервных волокон. Таким образом, на уровне каждого позвонка от спинного мозга в обе стороны отходит всего 31 пара спинно-мозговых нервов смешанного типа. Белое вещество спинного мозга образует проводящие пути (рис. 328), которые тянутся вдоль спинного мозга, соединяя как отдельные его сегменты друг с другом, так и спинной мозг с головным. Одни проводящие пути называются восходящими или чувствительными, передающими возбуждение в головной мозг, другие — нисходящими или двигательными, которые проводят импульсы от головного мозга к определенным сегментам спинного мозга.

Рисунок 328. Схема расположения проводящих путей в белом веществе и ядер в сером веществе на поперечном разрезе спинного мозга. 1 и 2 - тонкий и клиновидный пучки; 3 -собственный (задний) пучок; 4 - задний спинно-мозжечковый путь; 5 - латеральный пира-мидный (корково-спинномозговой) путь; 6 - собственный пучок (латеральный); 7 -красноядер-но-спинномозговой путь; 8 - латеральный спинно-таламический путь; 9 - задний преддверно-спинномозговой путь; 10 - передний спинно-мозжечковый путь; 12 - оливо-спинномозговой путь; 13 - ретикуло-спинномозговой путь; 14 - преддверно-спинномозговой путь; 15 - передний спинно-таламический путь; 16 - собственный пучок (передний); 17 - передний пирамидный (корково-спинномозговой) путь; 18 - покрышечно-спинномозговой путь; 19 - переднемедиаль-ное ядро; 20 - заднемедиальное ядро; 21 - центральное ядро; 22 - переднелатеральное ядро; 23 - задне-латеральноее ядро; 24 - промежуточно-латеральное ядро; 25 - промежуточное ядро; 26 - центральный канал; 27 - грудное ядро; 28 - собственное ядро (BNA); 29 - пограничная зона (BNA); 30 - губчатый слой; 31 - студенистое вещество.

 

На поперечном разрезе можно видеть, что он состоит из двух типов ткани: внутренней массы серого вещества, имеющей в разрезе форму бабочки и состоящей из тел нервных клеток, и лежащего снаружи белого вещества, образованного пучками аксонов и дендритов. Белый цвет этих пучков обусловлен миэлиновыми оболочками нервных волокон; концы аксонов и дендритов, находящиеся в центральном сером веществе, не имеют миэлиновых оболочек. «Крылья» серого вещества разделены на два задних и два передних рога. Передние рога содержат тела нейронов, аксоны которых направляются в составе спинномозговых нервов к мышцам; все остальные нервные клетки спинного мозга являются вставочными нейронами.

Аксоны и дендриты белого вещества разделены на пучки со сходными функциями: восходящие пути, которые проводят импульсы к головному мозгу, и нисходящие пути, которые проводят импульсы от головного мозга к эффекторам.

При изучении расположения и функции проводящих путей обнаружился один любопытный факт, еще не получивший удовлетворительного объяснения. Все волокна спинного мозга пере-крещиваются, т.е. переходят с одной стороны тела на другую где-либо на пути от рецептора к головному мозгу или от головного мозга к мышце. Так, правая половина головного мозга контролирует левую половину тела и получает сообщения от рецепторов левой стороны. Некоторые волокна перекрещиваются внутри самого спинного мозга, другие — в головном мозгу.
В центре серого вещества находится узкий канал, проходящий вдоль всего спинного мозга и наполненный цереброспинальной жидкостью, похожей на плазму крови. Спинной и головной мозг покрывают три соединительно-тканные мозговые оболочки (meninges) (рис. 307).

Снаружи располагается твердая мозговая оболочка. Между этой оболочкой и надкостницей позвоночного канала находится эпидуральное пространство. Кнутри от твердой мозговой оболочки имеется паутинная оболочка, отделенная от твердой мозговой оболочки субдуральным пространством. Непосредственно к спинному мозгу прилежит внутренняя мягкая мозговая оболочка. Между паутинной и внутренней мозговой оболочками располагается подпаутинное (субарахноидальное) пространство, заполненное спинно-мозговой жидкостью.

Твердая оболочка спинного мозга представляет собой слепой мешок, внутри которого находятся спинной мозг, передние и задние корешки спинномозговых нервов и остальные мозговые оболочки. Твердая мозговая оболочка плотная, образована волокнистой соединительной тканью, содержит значительное количество эластических волокон. Вверху твердая оболочка спинного мозга прочно срастается с краями большого затылочного отверстия и переходит в твердую оболочку головного мозга. В позвоночном канале твердая мозговая оболочка укрепляется ее отростками, продолжающимися в оболочки спинно-мозговых нервов. Эти отростки срастаются с надкостницей в области межпозвоночных отверстий. Твердую мозговую оболочку укрепляют также многочисленные фиброзные пучки, идущие к задней продольной связке позвоночника. Эти пучки лучше выражены в шейной, поясничной и крестцовой областях и хуже — в грудной области. В верхнем шейном отделе твердая оболочка покрывает правую и левую позвоночные артерии.

Наружная поверхность твердой мозговой оболочки отделена от надкостницы эпидураль-ным пространством. Оно заполнено жировой клетчаткой и содержит внутреннее позвоноч-ное венозное сплетение. Внутренняя поверхность твердой оболочки спинного мозга отделена от паутинной оболочки щелевидным субдуральным пространством. Оно заполнено большим количеством тонких соединительнотканных пучков. Субдуральное пространство спинного мозга вверху сообщается с одноименным пространством головного мозга, внизу слепо заканчивается на уровне второго крестцового позвонка. Ниже этого уровня пучки фиброзных волокон твердой мозговой оболочки продолжаются в терминальную нить.

Паутинная оболочка спинного мозга представлена тонкой полупрозрачной соединительно-тканной пластинкой, расположенной кнутри от твердой оболочки. Твердая и паутинная оболочки срастаются между собой только возле межпозвоночных отверстий. Между паутин-ной и мягкой оболочками (в субарахноидальном пространстве) расположена сеть пере-кладин, состоящих из тонких пучков коллагеновых и эластических волокон. Эти соедини-тельнотканные пучки соединяют паутинную оболочку с мягкой оболочкой и со спинным мозгом.

Мягкая (сосудистая) оболочка спинного мозга плотно прилежит к поверхности спинного мозга. Соединительнотканные волокна, отходящие от мягкой оболочки, сопровождают кровеносные сосуды, заходят вместе с ними в ткань спинного мозга. Между паутинной и мягкой мозговыми оболочками находится подпаутинное, или субарахноидальное прост-ранство. В нем содержится 120-140 мл спинномозговой жидкости. В верхних отделах это пространство продолжается в подпаутинное пространство головного мозга. В нижних отделах подпаутинное пространство спинного мозга содержит лишь корешки спинномозговых нервов. Ниже уровня второго поясничного позвонка пунктированием возможно получить для исследования спинномозговую жидкосгь, не рискуя повредить спинной мозг.

От боковых сторон мягкой мозговой оболочки спинного мозга, между передними и зад-ними корешками спинномозговых нервов вправо и влево фронтально идет зубчатая связка. Зубчатая связка также срастается с паутинной и с внутренней поверхностью твердой оболочки спинного мозга, связка как бы подвешивает спинной мозг в субарахноидальном пространстве. Имея сплошное начало на боковых поверхностях спинного мозга, связка в латеральном направлении разделяется на 20-30 зубцов. Верхний зубец соответствует уровню большого затылочного отверстия, нижний расположен между корешками двенадцатого грудного и первого поясничного позвонков. Помимо зубчатых связок спинной мозг фиксируется в позвоночном канале при помощи задней подпаутинной перегородки. Эта перегородка начинается от твердой, паутинной и мягкой оболочек и соединяется с задней срединной перегородкой, имеющейся между задними канатиками белого вещества спинного мозга. В нижней поясничной и крестцовой областях спинного мозга задняя перегородка подпаутинного пространства, как и зубчатые связки, отсутствует. Жировая клетчатка и венозные сплетения эпидурального пространства, оболочки спинного мозга, спинномозговая жидкость и связочный аппарат предохраняют спинной мозг от сотрясений при движениях тела.

Менингит — заболевание, при котором эти оболочки инфицируются и воспаляются. Одна из них (твердая мозговая оболочка) прикреплена к костным невральным дугам позвонков, другая (мягкая мозговая оболочка) лежит на самой поверхности спинного мозга, а третья (паутинная оболочка) находится между ними. Пространства между оболочками тоже наполнены цереброспинальной жидкостью, так что спинной мозг (так же как и головной) плавает в этой жидкости и защищен от ударов о твердую поверхность позвонков (или черепа) при каждом движении.

Спинной мозг выполняет две функции — рефлекторную и проводниковую.

Каждый рефлекс осуществляется строго определенным участком центральной нервной системы — нервным центром. Нервным центром называют совокупность нервных клеток, расположенных в одном из отделов мозга и регулирующих деятельность какого-либо органа или системы. Нервные центры спинного мозга непосредственно связаны с рецепторами и исполнительными органами тела. Двигательные нейроны спинного мозга обеспечивают сокращение мышц туловища и конечностей, а также дыхательных мышц — диафрагмы и межреберных. Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд вегетативных центров.

 

Таблица 13. Сегментарная иннервация мышц и их функции.

 

Осуществляемые движения Мышцы Нервы Сегменты спинного мозга
Наклон головы вперед Mm. sternocleidomastoideus, rectus capitis anterior и др. Nn. accessorius, cervicales I-III CI-III и ядро n. accesorii
Наклон головы назад Mm. spenius capitis, rectus capitis posterior major et minor Nn. cervicales CIIV
Поворот головы в сторону M. sternocleidomastoideus и др. N. accessorius CI-III и ядро n. accesorii
Наклон туловища вперед Mm. rectus abdominis, obliqus internus abdominis N. toracici VIII-XII TVII-TXII
Разгибание туловища Mm. longissimus thoracis, spinalis thoracis Rami dorsales n. thoracici TI-TXII
Наклон туловища в стороны M. quadratus lumborum Nn. spinales lum-bales TXII-LI-LIII
Движение диафрагмы Diaphragma N. phrenicus CIV
Поднимание плеч (пожимание плечами) M. trapezius N. accessorius CIII и ядро n. accesorii
Ротация верхней конечности в плечевом суставе кнаружи Mm. teres minor, supraspinatus et infraspinatus N. suprascapularis CIV- CV
Ротация верхней конечности в плечевом суставе кнутри Mm. teres major, subscapularis N. subscapularis CV- CVI
Поднимание верхней конеч-ности до горизонтальной плос-кости M. deltoideus N. axillaris CV

 

 

Продолжение таблицы 13

Осуществляемые движения Мышцы Нервы Сегменты спинного мозга
Поднятие верхних конечнос-тей выше горизонтальной плоскости Mm. trapezius, serratus posterior superior et inferior Nn. axillaris, acce-ssorius, thoracicus longus CV- CVI
Сгибание верхней конечности в локтевом суставе M. biceps brachii N. musculocutaneus CV- CVI
Разгибание верхней конеч-ности в локтевом суставе M. triceps brachii N. radialis CVI- CVII
Супинация предплечья M. supinator N. radialis CV- CVI
Пронация предплечья Mm. pronator teres et quadratus N. medianus CVII- CVIII
Сгибание в лучезапястном суставе Mm. flexor carpi radialis et ulnaris N. medianus et ul-naris CVIII
Разгибание в лучезапястном суставе Mm. extensor carpi radialis longus et brevis, extensor carpi ulnaris N. radialis CVII
Сгибание пальцев кисти в межфаланговых суставах Mm. interossei palmares, flexor digitorum profundus et superficialis N. medianus et ul-naris CVIII-TI
Разгибание пальцев кисти в межфаланговых суставах M. extensor digitorum N. radialis CVII- CVIII
Отведение и приведение пальцев Mm. interossei dorsales et palmares Nn. ulnaris CVIII
Сгибание основных фаланг пальцев кисти при разгибании средних и концевых фаланг Mm. lumbricales, interossei palmares N. medianus et ul-naris CVIII
Сгибание нижней конечности в тазобедренном суставе (приведение бедра к животу) M. iliopsoas и др. N. femoralis LII-LIV
Разгибание нижней конеч-ности в тазобедренном суставе Mm. gluteus maximus N. gluteus inferior LV-SI
Приведение нижней конеч-ности в тазобедренном суставе Mm. adductor longus, mag-nus et brevis N. obturatorius in-ternus LII-LIII
Отведение нижней конечности в тазобедренном суставе Mm. gluteus minimus N. gluteus superior LIV-LV
Ротация бедра кнаружи Mm. gluteus maximus, pyriformis, gemellus superior et inferior, obturatorius internus N. gluteus inferior, ischiadicus, obtura-torius internus LIV-LV-SI
Сгибание нижней конечности в коленном суставе Mm. biceps femoris, semitendinosus, semimem-branosus N. ischiadicus LV-SI
Разгибание нижней конечности в коленном суставе M. quadriceps femoris N. femoralis LIII-LIV
Разгибание нижней конеч-ности в голеностопном суставе M. tibialis anterior N. peroneus pro-fundus LIV-LV
Сгибание нижней конечности в голеностопном суставе M. triceps surae N. tibialis SI-SII
Отведение стопы M. peroneus longus N. peroneus super-ficialis LIV-LV

 

Еще одна функция спинного мозга — проводниковая. Пучки нервных волокон, образующих белое вещество, соединяют различные отделы спинного мозга между собой и головной мозг со спинным. Различают восходящие пути, несущие импульсы к головному мозгу, и нисходящие, несущие импульсы от головного мозга к спинному. По первым возбуждение, возникающее в рецепторах кожи, мышц, внутренних органов, проводится по спинномозговым нервам в задние корешки спинного мозга, воспринимается чувствительными нейронами спинно-мозговых узлов и отсюда направляется либо в задние рога спинного мозга, либо в составе белого вещества достигает ствола, а затем коры больших полушарий. Нисходящие пути проводят возбуждение от головного мозга к двигательным нейронам спинного мозга. Отсюда возбуждение по спинно-мозговым нервам передается к исполнительным органам.

В боковых рогах спинного мозга находятся центры вегетативной нервной системы. На уровне С8-Th1 расположен симпатический центр расширения зрачка. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями. Аксоны этих нейронов, образующих вегета-тивное ядро в сегментах спинного мозга с восьмого шейного по второй поясничный, прохо-дят через передний рог, выходят из спинного мозга в составе передних корешков спинно-мозговых нервов. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).

Спинной мозг кровоснабжается продольно идущими передней и двумя задними спинномозговыми артериями. Передняя спинномозговая артерия образуется при соединении спинномозговых ветвей правой и левой позвоночных артерий, и идет вдоль передней продольной щели спинного мозга. Задняя спинномозговая артерия, парная, прилежит к задней поверхности спинного мозга возле вхождения в него заднего корешка спинно-мозгового нерва. Эти артерии продолжаются на протяжении всего спинного мозга. Они соединяются со спинномозговыми ветвями глубокой шейной артерии, задних межреберных, поясничных и латеральных крестцовых артерий, проникающими в позвоночный канал через межпозвоночные отверстия.

Вены спинного мозга впадают во внутреннее позвоночное венозное сплетение.

Спинномозговые нервы — это 31 пара нервов, отходящих от спинного мозга и управляющих остальной нервной периферической системой, а также частью вегетативной нервной системы. Эти смешанные нервы берут начало в сером веществе спинного мозга, которое находится во внутренней части мозга и окружено белым веществом.

 

 

Рисунок 329. Спинномозговые нервы.

Нервы образуют два хорошо дифференцированных отростка — передний, или вентральный, отросток состоит из двигательных волокон, а задний, или дорсальный, состоит из чувствительных волокон. Затем в области межпозвоночного отверстия они соединяются в один ствол, а потом снова ветвятся.

Одна вентральная ветвь, которая делится на тысячи ответвлений, идет к шее, рукам, передней части груди и ногам. Дорсальная ветвь заворачивает за позвоночный столб и направляется к спине. Несколько спинномозговых нервов могут идти вместе до места назначения, образуя плотные сети, называемые сплетениями.

На поперечном срезе в спинном мозге выделяют серое вещество, имеющее форму бабочки в центральных отделах и белое вещество, лежащее на ею периферии. В сером веществе выделяют передние (двигательные), задние (чувствительные) и боковые (вегетативные) рога. Белое вещество разделяется на передние, боковые и задние столбы (канатики) и представляет собой проводящие пути спинного мозга.

 

Рисунок 330. Топография периферических нервов, их выход из спинного мозга и отношение к сплетениям и позвоночным ганглиям.

 

Нервные волокна, вышедшие из спинного мозга, образуют передние и задние корешки. Условной границей корешка с одной стороны является спинной мoзг, а с другой — место их слияния. Участок от места слияния корешков до межпозвоночного узла составляет корешковый нерв; от узла до выхода из межпозвоночного отверстия — канатик; участки, где канатики переплетаются, определяются как нервное сплетение, а участки от сплетений до периферических рецепторов — как периферические нервы.

Через спинномозговые нервы спинной мозг осуществляет контроль над туловищем, конечностями, внутренними органами грудной, брюшной полостей и таза. Согласно количеству туловищных сегментов и соответствующих сегментов спинного мозга у человека 31 пара спинномозговых нервов. Каждый из них начинается в области «своего» межпозвоночного отверстия, где его образуют соединяющиеся в один ствол передний (двигательный) и задний (чувствительный) корешки. Спинномозговые нервы очень короткие, так, после примерно 1,5 см хода они уже заканчиваются, разветвляясь, причем все одинаковым образом, на переднюю, заднюю и оболочечную ветви.

Каждая из 31-й правых и левых задних ветвей проходит между поперечными отростками пары, позвонков в область спины, где обеспечивает чувствительную иннервацию кажи и глубоких мышц (разгибателей туловища).

Передние ветви спинномозговых нервов ведут себя более сложным образом, поскольку на строение контролируемых ими передних участков туловища оказывают влияние развивающиеся конечности. Это нарушает внешние признаки упорядоченности (сегментар-ности) в организации соответствующих отделов периферической нервной системы.

Передние ветви грудных (12) спинномозговых нервов сохраняют эту упорядоченность, они идут каждый в своем межреберном промежутке (межреберные нервы) и иннервируют кожу и глубокие мышцы передней и переднебоковой стенок туловища (груди и живота).

Рисунок 331. Кожные нервы задней стороны туловища. I - задние ветви спинномозговых нервов; 2 - верхние нервы ягодиц; 3 - средние нервы ягодиц; 4 - нижние нервы ягодиц; 5 -задний кожный нерв бедра; 6 - латеральная кожная ветвь (от подвздошно-подчревного нерва поясничного сплетения); 7 - медиальная кожная ветвь; 8 - латеральная кожная ветвь; 9 - надключичные нервы.

 

Передние ветви шейных (8 нервов), грудных (12), поясничных (5), крестцовых (5) и копчикового (1-3) нервов образуют несколько сплетений, сложным образом соединяясь друг с другом. В местах соединений происходит обмен волокнами между нервными стволами в результате от такого сплетения пойдут в конечности нервы уже с иным набором волокон, нужным для определенных мышечных групп и кожных областей конечности.

Шейное сплетение, plexus cervicalis, образовано передними ветвями 4 верхних шейных (CI- CIV) спинномозговых нервов (рис. 332). Эти ветви соединены тремя дугообразными петлями. Сплетение располагается на уровне четырех верхних шейных позвонков на переднелатеральной поверхности глубоких мышц шеи (мышца, поднимающая лопатку, медиальная лестничная мышца, ременная мышца шеи), будучи прикрыто спереди и сбоку грудино-ключично-сосцевидной мышцей.

Шейное сплетение имеет соединения с добавочным и подъязычным нервами. Среди ветвей шейного сплетения различают мышечные, кожные и смешанные нервы (ветви).

Двигательные (мышечные) нервы (ветви) идут к рядом расположенным мышцам: длинным мышцам шеи и головы, передней, средней и задней лестничным мышцам, передней и латеральной прямым мышцам головы, передним межпоперечным мышцам и мышце, поднимающей лопатку. К двигательным ветвям шейного сплетения относится также шейная петля, ansa cervicalis. В ее образовании участвует нисходящая ветвь подъязычного нерва — верхний корешок, radix superior [anterior], содержащий волокна из шейного сплетения (CI), и ветви, отходящие от шейного сплетения, — нижний корешок, radix inferior [posterior] (CII- CIII). Шейная петля располагается несколько выше верхнего края промежуточного сухожилия лопаточно-подъязычной мышцы, обычно на передней поверхности общей сонной артерии. Волокна, отходящие от шейной петли, иннервируют мышцы, расположенные ниже подъязыч-ной кости (подподъязычные мышцы: грудино-подъязычная, грудино-щитовидная, лопаточно-подъязычная, щитоподъязычная).

Рисунок 332. Нервы шейного сплетения и кожные ветви черепныхнервов. Вид справа. 1 -поперечный нерв шеи; 2 - надключичные нервы; 3 - большой ушной нерв; 4 - малый затылочный нерв; 5 - большой затылочный нерв (задняя ветвь второго шейного нерва); 6 -ушно-височный нерв; 7 - скуло-лицевая ветвь; 8 - скуло-височная ветвь; 9 - надглазничный нерв; 10 - надблоковый нерв; 11 - подглазничный нерв; 12 - подбородочный нерв.

 

От шейного сплетения отходят мышечные ветви, иннервирующие также трапециевидную и грудино-ключично-сосцевидную мышцы.

Чувствительные (кожные) нервы шейного сплетения отходят от сплетения, огибают задний край грудино-ключично-сосцевидной мышцы немного выше ее середины и появляются в подкожной жировой клетчатке под подкожной мышцей шеи. Шейное сплетение дает следующие кожные ветви: большой ушной нерв, малый затылочный нерв, поперечный нерв шеи и надключичные нервы.

1. Большой ушной нерв, n. auricularis magnus, является самой большой кожной ветвью шейного сплетения. По наружной поверхности грудино-ключично-сосцевидной мышцы он направляется косо и вперед к коже ушной раковины, наружного слухового прохода и области позадичелюстной ямки.

2. Малый затылочный нерв, n. occipitalis minor, выйдя из-под заднего края грудино-ключично-сосцевидной мышцы, поднимается вверх вдоль этой мышцы и иннервирует кожу нижнелатеральной части затылочной области и задней поверхности ушной раковины.

3. Поперечный нерв шеи, n. transversus соlli, от места выхода у заднего края грудино-ключично-сосцевидной мышцы идет горизонтально вперед и делится на верхние и нижние ветви, rr. superiores et inferiores. Он иннервирует кожу передней и латеральной областей шеи. Одна из верхних его ветвей соединяется с шейной ветвью лицевого нерва, образуя поверхностную шейную петлю.

4. Надключичные нервы, nn. supraclaviculares (3-5), выходят из-под заднего края грудино-ключично-сосцевидной мышцы, направляются вниз и кзади в жировой клетчатке латеральной области шеи. Они иннервируют кожу в надключичной и подключичной областях. Соответственно их положению выделяют медиальные, промежуточные и латеральные (задние) надключичные нервы, nn. supraclaviculares mediales, intermedii et laterales.


Рисунок 333. Шейное сплетение (plexus cervicalis), плечевое сплетение (plexus brachialis) и их ветви. Вид справа. Средняя часть ключицы, подключичные артерия и вена, верхнее брюшко лопаточно-подьязычной мышцы удалены. Большая грудная мышца разрезана и отвернута вниз. I - шейное сплетение; 2 - шейная петля; 3 - диафрагмальцый нерв; 4 - блуж-даюший нерв; 5 - передняя лестничная мышца; 6 - обшая сонная артерия; 7 - плечевое сплетение; 8 - подключичпая артерия (отрезана); 9 - латеральные и медиальные грудные нервы; 10 - передние кожные ветви (межреберных нервов); 11 - длинный грудной нерв; 12 -межреберно-плечевые нервы; 13 - медиальный пучок плечевого сплетения; 14 - латеральный пучок; 15 - подмышечная артерия; 16 - надключичные нервы; 17 - средняя лестничная мышца; 18 - малый затылочный нерв; 19 - наружная сонная артерия; 20 - внутренняя яремная вена (отрезана); 21 - подъязычный нерв.

 

Диафрагмальный нерв, п. phrenicus, является смешанной ветвью шейного сплетения. Он формируется из передних ветвей III-IV (иногда и V) шейных спинномозговых нервов, спускается вниз по передней поверхности передней лестничной мышцы и через верхнюю апертуру грудной клетки (между подключичной артерией и веной) проникает в грудную полость. Вначале оба нерва идут в верхнем средостении, затем переходят в среднее средостение, располагаясь на боковой поверхности перикарда, кпереди от корня соответст-вующего легкого. Здесь диафрагмальный нерв лежит между перикардом и медиастинальной плеврой и заканчивается в толще диафрагмы.

Двигательные волокна диафрагмального нерва иннервируют диаграмму, чувствительные — перикардиальная ветвь, r. pericardiacus, — плевру и перикард. Чувствительные диафрагмально-брюшинные ветви, rr. phrenicoabdominales, проходят в брюшную полость и иннервируют брюшину, покрывающую диафрагму. Ветви правого диафрагмального нерва проходят, не прерываясь (транзитом), через чревное сплетение к печени.

Плечевое сплетение, plexus brachialis, образовано передними ветвями четырех нижних шейных (CV-CVIII), частью передней ветви IV шейного (CIV) и I грудного (ThI) спинномозго-вых нервов (рис. 334-346).

Рисунок 334. Схема плечевого сплетения (по С.И. Карчикяну). С5-D1 — передние ветви спинальных нервов; I, II, III — верхний, средний и нижний первичные стволы сплетения; а — задние, б — передние ветви первичных стволов сплетения; А — задний; Б — наружный; В — внутренний вторичные стволы сплетения; 1 - подкрыльцовый; 2 - лучевой; 3 - мышечно-кожный; 4 - срединный; 5 - локтевой нервы; 6 и 7 - внутренние кожные нервы предплечья и плеча.


Рисунок 335. Нервы плечевого пояса и плеча, правого. Вид спереди. 1 - ключица (отрезана); 2 - пучки плечевого сплетения; 3 - подмышечная артерия; 4 - латеральная грудная артерия (отрезана); 5 - подлопаточные нервы; 6 - подмышечный нерв; 7 - грудно-спинной нерв; 8 -подлопаточная мышца; 9 - медиальный кожный нерв плеча; 10 - широчайшая мышца спины; 11 - глубокая артерия плеча; 12 - лучевой нерв; 13 - трехглавая мышца плеча (медиальная головка); 14 - локтевой нерв; 15 - медиальный кожный нерв предплечья; 16 - апоневроз двуглавой мышцы плеча; 17 - латеральный кожный нерв предплечья; 18 - плечевая артерия; 19 - мышечно-кожный нерв; 20 - двуглавая мышца плеча; 21 - клювовидно-плечевая мышца; 22 - срединный нерв; 23 - подлопаточная артерия; 24 - большая грудная мышца (отрезана); 25 - грудо-акромиальная артерия.

Рисунок 336. Надлопаточный (nervussuprascapularis), подмышечный (nervus axillaris) и другие нервы плечевого сплетения. Вид сзади. Участки надостной, подостной и дельто-видной мышц удалены. 1 - надостная мышца; 2 - надлопаточный нерв; 3 - надлопаточная артерия; 4 - задняя артерия, огибаюшая плечевую кость; 5 - подмышечный нерв; 6 -латеральный кожный нерв плеча; 7 - глубокая артерия плеча; 8 - лучевой нерв; 9 - задний кожный нерв предплечья; 10 - лучевая коллатеральная артерия; 11 - локтевой нерв; 12 - боль-ишя круглая мышца; 13 - артерия, огибающая лопатку; 14 - ость лопатки.


Рисунок 337. Нервы и артерии предплечья. Вид спереди. Поверхностные мышцы предплечья и возвышения малого пальца удалены. 1 - срединный нерв; 2 - локтевой нерв; 3 -медиальный надмыщелок; 4 - плечевая артерия; 5 - круглый пронатор (отрезан и отвернут в медиальную сторону); 6 - локтевая артерия; 7 - передний межкостный нерв и передняя межкостная артерия; 8 - поверхностная ладонная дуга (артериальная); 9 - поверхностная ветвь лучевой артерии; 10 - лучевая артерия; 11 - поверхностная ветвь лучевого нерва; 12 -глубокая ветвь лучевого нерва.


Рисунок 328. Общие и собственные пальцевые нервы (nervi digitales communes et proprii) на ладонной стороне кисти. Ладонный апоневроз удален. 1 - срединный нерв; 2 - локтевой нерв; 3 - локтевая артерия; 4 - гороховидная кость; 5 - поверхностные ветви локтевого нерва; 6 -поверхностная ладонная дуга; 7 - собственные ладонные пальцевые нервы (ветви локтевого нерва); 8 - собственные ладонные пальцевые нервы (ветви срединного нерва); 9 - обшие пальцевые нервы (срединного нерва); 10 - удерживатель сухожилий мышц-сгибателей; 11 -сухожилие поверхностного сгибателя пальцев; 12 - лучевая артерия.

Рисунок 339. Кожные нервы (nervi cutanei) на тыльной стороне кисти. 1 - тыльная ветвь локтевого нерва; 2 - фасция предплечья; 3 - задний кожный нерв предплечья; 4 - латеральный кожный нерв предплечья; 5 - поверхностная ветвь лучевого нерва; 6 - тыльные пальцевые нервы; 7 - собственные ладонные пальцевые нервы (от срединного нерва).

Рисунок 340. Кожные нервы (nervi cutanei) верхней конечности. Вид спереди. 1 - передние кожные ветви (межреберных нервов); 2 - медиальный кожный нерв плеча; 3 - латеральные кожные ветви (межреберных нервов); 4 - медиальный кожный нерв предплечья; 5 - поверх-ностная ветвь локтевого нерва; 6 - общие ладонные пальцевые нервы (локтевого нерва); 7 -собственные ладонные пальцевые нервы (локтевого нерва); 8 - собственные ладонные пальцевые нервы (срединного нерва); 9 - обшие ладонные пальцевые нервы (срединного нерва); 10 - поверхностная ветвь (лучевого нерва); 11 - латеральный кожный нерв предплечья (мышечно-кожного нерва); 12 - задний кожный нерв плеча (лучевого нерва); 13 - латеральный кожный нерв плеча (подмышечного нерва); 14 - надключичиые нервы (шейного сплетения).

Рисунок 341. Нервы плечевого пояса и плеча, правого. Вид спереди. 1 - ключица (отрезана); 2 - пучки плечевого сплетения; 3 - подмышечная артерия; 4 - латеральная грудная артерия (отрезана); 5 - подлопаточные нервы; 6 - подмышечный нерв; 7 - грудно-спинной нерв; 8 -подлопаточная мышца; 9 - медиальный кожный нерв плеча; 10 - широчайшая мышца спины; 11 - глубокая артерия плеча; 12 - лучевой нерв; 13 - трехглавая мышца плеча (медиальная головка); 14 - локтевой нерв; 15 - медиальный кожный нерв предплечья; 16 - апоневроз двуглавой мышцы плеча; 17 - латеральный кожный нерв предплечья; 18 - плечевая артерия; 19 - мышечно-кожный нерв; 20 - двуглавая мышца плеча; 21 - клювовидно-плечевая мышца; 22 - срединный нерв; 23 - подлопаточная артерия; 24 - большая грудная мышца (отрезана); 25 - грудо-акромиальная артерия.

Рисунок 342. Надлопаточный (nervussuprascapularis), подмышечный (nervus axillaris) и другие нервы плечевого сплетения. Вид сзади. Участки надостной, подостной и дельтовидной мышц удалены. 1 - надостная мышца; 2 - надлопаточный нерв; 3 -надлопаточная артерия; 4 - задняя артерия, огибаюшая плечевую кость; 5 - подмышечный нерв; 6 - латеральный кожный нерв плеча; 7 - глубокая артерия плеча; 8 - лучевой нерв; 9 -задний кожный нерв предплечья; 10 - лучевая коллатеральная артерия; 11 - локтевой нерв; 12 - большая круглая мышца; 13 - артерия, огибающая лопатку; 14 - ость лопатки.

Рисунок 343. Нервы и артерии предплечья. Вид спереди. Поверхностные мышцы предплечья и возвышения малого пальца удалены. 1 - срединный нерв; 2 - локтевой нерв; 3 -медиальный надмыщелок; 4 - плечевая артерия; 5 - круглый пронатор (отрезан и отвернут в медиальную сторону); 6 - локтевая артерия; 7 - передний межкостный нерв и передняя межкостная артерия; 8 - поверхностная ладонная дуга (артериальная); 9 - поверхностная ветвь лучевой артерии; 10 - лучевая артерия; 11 - поверхностная ветвь лучевого нерва; 12 -глубокая ветвь лучевого нерва.

Рисунок 344. Общие и собственные пальцевые нервы (nervi digitales communes et proprii) на ладонной стороне кисти. Ладонный апоневроз удален. 1 - срединный нерв; 2 - локтевой нерв; 3 - локтевая артерия;4 - гороховидная кость; 5 - поверхностные ветви локтевого нерва; 6 -поверхностная ладонная дуга; 7 - собственные ладонные пальцевые нервы (ветви локтевого нерва); 8 - собственные ладонные пальцевые нервы (ветви срединного нерва); 9 - обшие пальцевые нервы (срединного нерва); 10 - удерживатель сухожилий мышц-сгибателей; 11 -сухожилие поверхностного сгибателя пальцев; 12 - лучевая артерия.

Рисунок 345. Кожные нервы (nervi cutanei) на тыльной стороне кисти. 1 - тыльная ветвь локтевого нерва; 2 - фасция предплечья; 3 - задний кожный нерв предплечья; 4 - латеральный кожный нерв предплечья; 5 - поверхностная ветвь лучевого нерва; 6 - тыльные пальцевые нервы; 7 - собственные ладонные пальцевые нервы (от срединного нерва).

Рисунок 346. Кожные нервы (nervi cutanei) верхней конечности. Вид спереди. 1 - передние кожные ветви (межреберных нервов); 2 - медиальный кожный нерв плеча; 3 - латеральные кожные ветви (межреберных нервов); 4 - медиальный кожный нерв предплечья; 5 - поверх-ностная ветвь локтевого нерва; 6 - общие ладонные пальцевые нервы (локтевого нерва); 7 -собственные ладонные пальцевые нервы (локтевого нерва); 8 - собственные ладонные пальцевые нервы (срединного нерва); 9 - общие ладонные пальцевые нервы (срединного нерва); 10 - поверхностная ветвь (лучевого нерва); 11 - латеральный кожный нерв предплечья (мышеч-но-кожного нерва); 12 - задний кожный нерв плеча (лучевого нерва); 13 - латеральный кожный нерв плеча (подмышечного нерва); 14 - надключичиые нервы (шейного сплетения).

 

В межлестничном промежутке передние ветви формируют три ствола: верхний ствол, truncus superior, средний ствол, truncus medius, и нижний ствол, truncus inferior. Эти стволы из межлестничного промежутка выходят в большую надключичную ямку и выделяются здесь вместе с отходящими от них ветвями как надключичная часть, pars supraclavicularis, плечевого сплетения. Стволы плечевого сплетения, расположенные ниже уровня ключицы, обозначаются как подключичная часть, pars infraclavicularis, плечевого сплетения. Уже в нижней части большой надключичной ямки стволы начинают делиться и формируют три пучка, fasciculi, которые в подмышечной ямке окружают подмышечную артерию с трех стороны. С медиальной стороны артерии располагается медиальный пучок, fasciculus medialis, с латеральной — латеральный пучок, fasciculus lateralis, и позади артерии — задний пучок, fasciculus posterior.

Ветви, отходящие от плечевого сплетения, делятся на короткие и длинные. Короткие ветви отходят главным образом от стволов надключичной части сплетения и иннервируют кости и мягкие ткани плечевого пояса. Длинные ветви отходят от подключичной части плечевого сплетения и иннервируют свободную верхнюю конечность.

Короткие ветви плечевого сплетения. К коротким ветвям плечевого сплетения относятся дорсальный нерв лопатки, длинный грудной, подключичный, надлопаточный, подлопаточ-ный, грудоспинной нерв, отходящие от надключичной части сплетения, а также латеральный и медиальный грудные нервы и подмышечный нерв, которые берут начало от подключичной части пучков плечевого сплетения.

1. Дорсальный нерв лопатки, n. dorsalis scapulae, начинается от передней ветви V шейного нерва (CV), ложится на переднюю поверхность мышцы, поднимающей лопатку. Затем между этой мышцей и задней лестничной мышцей дорсальный нерв лопатки направляется назад вместе с нисходящей ветвью поперечной артерии шеи и разветвляется в мышце, поднимающей лопатку, и ромбовидной мышце.

2. Длинный грудной нерв, n. thoracicus longus, (рис. 198), берет начало от передних ветвей V и VI шейных нервов (CV-CVI), спускается вниз позади плечевого сплетения, ложится на латеральную поверхность передней зубчатой мышцы между латеральной грудной артерией спереди и грудоспинной артерией сзади, иннервирует переднюю зубчатую мышцу.

3. Подключичный нерв, n. subclavius (CV), направляется кратчайшим путем к подключичной мышце впереди подключичной артерии.

4. Надлопаточный нерв, n. suprascapularis (CV-CVII), уходит латерально и назад. Вместе с надлопаточной артерией проходит в вырезке лопатки под верхней поперечной ее связкой в надостную ямку, а затем под акромион — в подостную ямку. Иннервирует над- и подостную мышцы, капсулу плечевого сустава.

5. Подлопаточный нерв, n. subscapularis (CV-CVII), идет по передней поверхности подлопаточной мышцы, иннервирует эту и большую круглую мышцы.

6. Грудоспинной нерв, n. thoracodorsalis (CV-CVII),вдоль латерального края лопатки спускается к широчайшей мышце спины, которую иннервирует.

7. Латеральный и медиальный грудные нервы, nn. pectorales lateralis et medialis, начинаются от латерального и медиального пучков плечевого сплетения (CV-ThI), идут вперед, прободают ключично-грудную фасцию и заканчиваются в большой (медиальный нерв) и малой (латеральный нерв) грудных мышцах.

8. Подмышечный нерв, n. axillaris, начинается от заднего пучка плечевого сплетения (CV- CVIII). По передней поверхности подлопаточной мышцы направляется вниз и латерально, затем поворачивает назад и вместе с задней огибающей плечевую кость артерией проходит через четырехстороннее отверстие. Обогнув хирургическую шейку плечевой кости сзади, нерв ложится под дельтовидную мышцу. Подмышечный нерв иннервирует дельтовидную и малую круглую мышцы, капсулу плечевого сустава. Конечная ветвь подмышечного нерва — верхний латеральный кожный нерв плеча, n. cutaneus brachii lateralis superior, огибает задний край дельтовидной мышцы и иннервирует кожу, покрывающую заднюю поверхность этой мышцы и кожу верхнего отдела заднелатеральной области плеча.

Длинные ветви плечевого сплетения. Длинные ветви отходят от латерального, медиального и заднего пучков подключичной части плечевого сплетения.

Из латерального пучка берут начало латеральный грудной и мышечно-кожный нервы, а также латеральный корешок срединного нерва. Из медиального пучка начинаются медиальный грудной нерв, медиальные, кожные нервы плеча и предплечья, локтевой нерв и медиальный корешок срединного нерва. Из заднего пучка происходят подмышечный и лучевой нервы.

1. Мышечно-кожный нерв, n. musculocutaneus, начинается от латерального пучка (CV-CVIII) плечевого сплетения в подмышечной ямке позади малой грудной мышцы. Нерв направляется латерально и вниз, прободает плечеклювовидную мышцу. Пройдя через брюшко этой мышцы в косом направлении, мышечно-кожный нерв располагается затем между задней поверхностью двуглавой мышцы плеча и передней поверхностью плечевой мышцы и выходит в латеральную локтевую борозду. Снабдив эти три мышцы мышечными ветвями, rr. musculares, а также капсулу локтевого сустава, мышечно-кожный нерв в нижней части плеча прободает фасцию и спускается на предплечье как латеральный кожный нерв предплечья, n. cutaneus antebrachii lateralis. Конечные ветви этого нерва распределяются в коже переднела-теральной поверхности предплечья до возвышения большого пальца.

2. Срединный нерв, n. medianus, образован слиянием двух корешков подключичной части плечевого сплетения — латерального, radix lateralis (CVI-CVIII), и медиального, radix medialis (CVIII-ThI), которые сливаются на передней поверхности подмышечной артерии, охватывая ее с двух сторон в виде петли. Нерв сопровождает подмышечную артерию в подмышечной ямке, а затем прилежит к плечевой артерии в медиальной плечевой борозде. Вместе с плечевой артерией в локтевой ямке нерв проходит под апоневрозом двуглавой мышцы плеча, где отдает ветви к локтевому суставу. На предплечье, пройдя между двумя головками круглого пронатора, срединный нерв проходит под поверхностный сгибатель пальцев, ложится между последним и глубоким сгибателем пальцев, доходит до лучезапястного сустава и направляется на ладонь. На плече ветвей не дает. На предплечье он иннервирует своими мышечными ветвями, rr. musculares, ряд мышц: круглый и квадратный пронаторы, поверхностный сгибатель пальцев, длинный сгибатель большого пальца, длинную ладонную мышцу, лучевой сгибатель запястья, глубокий сгибатель пальцев (латеральная часть), т. е. все мышцы передней (сгибательной) поверхности предплечья, кроме локтевого сгибателя кисти и медиальной части глубокого сгибателя пальцев. Наиболее крупной ветвью срединного нерва на предплечье является передний межкостный нерв, n. interosseus anterior, идущий по передней поверхности межкостной перепонки вместе с передней межкостной артерией. Эта ветвь иннервирует глубокие мышцы передней поверхности предплечья и отдает ветвь к передней части лучезапястного сустава. На ладонь кисти срединный нерв проходит через канал запястья вместе с сухожилиями сгибателей пальцев и под ладонным апоневрозом делится на конечные ветви. На кисти срединный нерв своими ветвями иннервирует следую-щие мышцы: короткую отводящую мышцу большого пальца, мышцу, противопоставляющую большой палец, поверхностную головку короткого сгибателя большого пальца, а также первую и вторую червеобразные мышцы. Еще до входа в канал запястья срединный нерв отдает небольшую ладонную ветвь срединного нерва, r. palmaris n. mediani, которая иннерви-рует кожу в области лучезапястного сустава (передняя поверхность), возвышения большого пальца и на середине ладони.

Конечными ветвями срединного нерва являются три общих ладонных пальцевых нерва, nn. digitales palmares communes.

Они располагаются вдоль первого, второго, третьего межпястных промежутков под поверхностной (артериальной) ладонной дугой и ладонным апоневрозом. Первый общий ладонный пальцевой нерв снабжает первую червеобразную мышцу, а также отдает три кожные ветви — собственные ладонные пальцевые нервы, nn. digitales palmares proprii. Две из них идут вдоль лучевой и локтевой сторон большого пальца, третья — вдоль лучевой стороны указательного пальца, иннервируя кожу этих участков пальцев. Второй и третий общие ладонные пальцевые нервы дают по два собственных ладонных пальцевых нерва, идущих к коже обращенных друг к другу поверхностей II, III и IV пальцев, а также к коже тыльной поверхности дистальной и средней фаланг II и III пальцев. Кроме того, от второго общего ладонного пальцевого нерва иннервируется вторая червеобразная мышца. Срединный нерв иннервирует локтевой сустав, суставы запястья и первых четырех пальцев.

3. Локтевой нерв, n. ulnaris, начинается от медиального пучка плечевого сплетения на уровне малой грудной мышцы. Вначале он располагается рядом со срединным нервом и плечевой артерией. Затем на середине плеча нерв уходит медиально и назад, прободает медиальную межмышечную перегородку плеча, достигает задней поверхности медиального надмыщелка плеча, где располагается в локтевой борозде. Далее локтевой нерв переходит в локтевую борозду предплечья, где сопровождает одноименную артерию. В нижней трети предплечья от локтевого нерва отходит тыльная ветвь, r. dorsalis n. ulnaris. Затем нерв продол-жается на ладонь в виде ладонной ветви локтевого нерва, r. palmaris n. ulnaris. Ладонная ветвь локтевого нерва вместе с локтевой артерией проходит на ладонь через щель в медиальной части удерживателя сгибателей (retinaculum flexorum).

Между ним и короткой ладонной мышцей делится на поверхностную ветвь, r. superficialis, и глубокую ветвь, r. profundus.

Как и срединный нерв, локтевой нерв на плече ветвей не дает. На предплечье локтевой нерв иннервирует локтевой сгибатель кисти и медиальную часть глубокого сгибателя пальцев, отдавая к ним мышечные ветви, rr. musculares, а также локтевой сустав. Тыльная ветвь локтевого нерва идет на заднюю поверхность предплечья между локтевым сгибателем кисти и локтевой костью. Перфорируя тыльную фасцию предплечья на уровне головки локтевой кости, эта ветвь идет на тыльную поверхность кисти, где делится на три, а последние — на пять тыльных пальцевых нервов, nn. digitales dorsales. Эти нервы иннерви-руют кожу тыльной поверхности V, IV и локтевой стороны III пальцев.

На ладонной поверхности кисти поверхностная ветвь локтевого нерва иннервирует короткую ладонную мышцу, отдает собственный ладонный пальцевой нерв, n. digitalis palmaris proprius, к коже локтевого края V пальца и общий ладонный пальцевой нерв, n. digitalis palmaris communis, который идет вдоль четвертого межпястного промежутка. Далее он делится на два собственных ладонных пальцевых нерва, иннервирующих кожу лучевого края V и локтевого края IV пальцев. Глубокая ветвь локтевого нерва сначала сопровождает глубокую ветвь локтевой артерии, а затем глубокую (артериальную) ладонную дугу. Она иннервирует все мышцы гипотенара (короткий сгибатель мизинца, отводящую и противопоставляющую мышцы мизинца), тыльные и ладонные межкостные мышцы, а также приводящую мышцу большого пальца, глубокую головку его короткого сгибателя, 3-ю и 4-ю червеобразные мышцы и суставы кисти.

4. Медиальный кожный нерв плеча, n. cutaneus brachii medialis, начинается от медиального пучка (CVIII-ThI) плечевого сплетения, сопровождает плечевую артерию. Двумя-тремя веточками прободает подмышечную фасцию и фасцию плеча и иннервирует кожу медиальной поверхности плеча. У основания подмышечной ямки медиальный кожный нерв плеча соединяется с латеральной кожной ветвью II, а в некоторых случаях и III межреберных нервов, образуя межреберно-плечевые нервы, nn. intercostobrachiales.

5. Медиальный кожный нерв предплечья, n. cutaneus antebrachii medialis, начинается от медиального пучка (CVIII-ThI) плечевого сплетения, выходит из подмышечной ямки, прилегая к плечевой артерии.

Примерно на середине плеча, там, где медиальная подкожная вена руки прободает фасцию плеча, медиальный кожный нерв выходит из-под фасции и под кожей спускается на предплечье, где иннервирует кожу его переднемедиальной поверхности.

6. Лучевой нерв, n. radialis начинается от заднего пучка (CV-CVIII) плечевого сплетения на уровне нижнего края малой грудной мышцы между подмышечной артерией и подлопаточной мышцей. Вместе с глубокой артерией плеча лучевой нерв проходит в так называемом плечемышечном канале, огибает плечевую кость и покидает канал в нижней трети плеча на латеральной его стороне. Далее нерв прободает латеральную межмышечную перегородку плеча и идет вниз между плечевой мышцей и началом плечелучевой мышцы. На уровне локтевого сустава лучевой нерв делится на поверхностную и глубокую ветви. Поверхностная ветвь, r. superficialis, лучевого нерва выходит на переднюю поверхность предплечья, направ-ляется вниз, в лучевую бороздку, располагается кнаружи от лучевой артерии. В нижней трети предплечья поверхностная ветвь переходит на тыльную поверхность предплечья между плечевой мышцей и лучевой костью и прободает фасцию предплечья. На 4-5 см выше уровня шиловидного отростка лучевой кости эта ветвь отдает ветви к коже тыльной (дорсальной) и латеральной сторонам основания большого пальца и делится на пять тыльных пальцевых нервов, nn. digitales dorsales. Два из этих нервов идут на лучевую и локтевую поверхности большого пальца и иннервируют его кожу с тыльной стороны. Остальные три пальцевых нерва разветвляются в коже II и лучевой стороны III пальцев, на уровне проксимальной (основной) фаланги. Кожу на тыле средней и дистальной фаланг II и III пальцев иннервируют ладонные пальцевые нервы срединного нерва.

Глубокая ветвь, r. profundus, лучевого нерва из передней латеральной локтевой борозды выходит в толщу мышцы-супинатора, проникает к шейке лучевой кости, которую огибает с латеральной стороны, и иннервирует все мышцы на задней поверхности предплечья. Конечной и наиболее длинной ее ветвью является задний межкостный нерв, n. interosseus posterior, который сопровождает заднюю межкостную артерии и отдает ветви к рядом расположенным мышцам.

На плече лучевой нерв иннервирует мышцы задней группы плеча (трехглавая мышца плеча и локтевая мышца) и сумку плечевого сустава. В подмышечной ямке от лучевого нерва отходит задний кожный нерв плеча, n. cutaneus brachii posterior, направляется кзади, пронизывает длинную головку трехглавой мышцы плеча, прободает фасцию плеча вблизи сухожилия дельтовидной мышцы и разветвляется в коже заднелатеральной поверхности плеча.

В плечемышечном канале от лучевого нерва отходит задний кожный нерв предплечья, n. cutaneus antebrachii posterior, который вначале сопровождает лучевой нерв, а затем у латеральной межмышечной перегородки плеча (выше латерального надмыщелка) прободает фасцию плеча и иннервирует кожу задней поверхности нижнего отдела плеча и кожу задней поверхности предплечья.

Передние ветви, rr. ventrales [anteriores], грудных спинномозговых нервов (ThI-ThXI) сохраняют метамерное (сегментарное) строение и в количестве 12 пар идут латерально и вперед в межреберных промежутках. Одиннадцать верхних пар передних ветвей называются межреберными нервами, так как находятся в межреберьях, а двенадцатый нерв, располагающийся справа и слева под XII ребром, получил название подреберного нерва.

Рисунок 347. Межреберные нервы (nervi intercortales) и их ветви. 1 - межреберные нервы (передние ветви грудных спинномозговых нервов); 2 - латеральная кожная ветвь; 3 -внутренняя межреберная мышца; 4 - передняя кожная ветвь; 5 - наружная межреберная мышца; 6 - задние межреберные артерия и вена; 7 - симпатический ствол; 8 - соедини-тельные ветви симпатического ствола с межреберным нервом; 9 - спинной мозг; 10 - задняя ветвь грудного спинномозгового нерва.

 

Межреберные нервы (рис. 347), nn. intercostales, проходят в межреберных промежутках между наружной и внутренней межреберными мышцами. Каждый межреберный нерв, а также подреберный нерв вначале лежат под нижним краем соответствующего ребра, в борозде вместе с артерией и веной. Верхние шесть межреберных нервов доходят до грудины и под названием передних кожных ветвей, rr. cutanei anteriores, заканчиваются в коже передней грудной стенки. Пять нижних межреберных нервов и подреберный нерв продолжаются в переднюю стенку живота, проникают между внутренней косой и поперечной мышцами живота, прободают стенку влагалища прямой мышцы живота, иннервируют мышечными ветвями эти мышцы и заканчиваются в коже передней стенки живота.

Передними ветвями грудных спинномозговых нервов (межреберные и подреберный нервы) иннервируются следующие мышцы: наружные и внутренние межреберные мышцы, подреберные мышцы, мышцы, поднимающие ребра, поперечная мышца груди, поперечная мышца живота, внутренняя и наружная косые мышцы живота, прямая мышца живота, квадратная мышца поясницы и пирамидальная мышца. Каждый межреберный нерв отдает латеральную кожную ветвь, r. cutaneus lateralis (pectoralis et abdominalis), и переднюю кожную ветвь, r. cutaneus anterior (pectoralis et abdominalis), иннервирующие кожу груди и живота. Латеральные кожные ветви отходят на уровне средней подмышечной линии и в свою очередь делятся на переднюю и заднюю ветви. Латеральные кожные ветви II и III межреберных нервов соединяются с медиальным кожным нервом плеча и называются межреберно-плечевыми нервами, nn. intercostobrachiales. Передние кожные ветви отходят от межреберных нервов у края грудины и прямой мышцы живота.

У женщин латеральные ветви IV, V и VI, а также передние ветви II, III и IV межреберных нервов иннервируют молочную железу: латеральные и медиальные ветви молочной железы, rr. mammarii laterales et mediales.

Передние ветви поясничных и крестцовых спинномозговых нервов (рис. 348-355), соединяясь друг с другом, образуют поясничное и крестцовое сплетения. Связующим звеном между этими сплетениями служит пояснично-крестцовый ствол. В результате оба эти сплетения объединяют под названием пояснично-крестцовое сплетение, plexus lumbosacralis.

 

Рисунок 348. Поясничное сплетение (plexus lumbalis) и крестцовое сплетение (plexus sacralis) и их ветви. Вид спереди. На правой стороне большая поясничная мышца удалена. I -поясничное сплетение; 2 - квадратная мышца поясницы; 3 - симпатический ствол; 4 -подреберный (12-й межреберный) нерв; 5 - подвздошно-подчревный нерв; 6 - подвздошно-паховый нерв; 7 - большая поясничная мышца; 8 - латеральный кожный нерв бедра; 9 -поло-вая ветвь бедренно-полового нерва; 10 - бедренная ветвь бедренно-полового нерва; 11 -пахо-вая связка; 12 - бедренный нерв; 13 - крестцовое сплетение; 14 - запирательный нерв; 15 - латеральный кожный нерв бедра; 16 - бедренный нерв; 17 - пояснично-крестцовый ствол.

Рисунок 349. Нервы и кровеносные сосуды промежности мужчины. Вид снизу. Большая ягодичная мышца и крестцово-бугорная связка частично удалены. I - мошонка; 2 -поверхностная поперечная мышца промежности; 3 - седалищный бугор; 4 - мышца, поднимающая задний проход; 5 - заднепроходное отверстие; 6 - нижние прямокишечные нервы; 7 - половой нерв; 8 - внутренние половые артерия и вены; 9 - дорсальный нерв полового члена; 10 - задние мошоночные нервы.

Рисунок 350. Нервы и кровеносные сосуды передней стороны бедра, правого. Мышцы бед-ра частично удалены. 1 - запирательный нерв; 2 - длинная приводящая мышца; 3 - кожная ветвь запирательного нерва; 4 - поднадколенниковая ветвь; 5 - подкожный нерв; 6 - бедрен-ная вена; 7 - бедренная артерия; 8 - бедренный нерв; 9 - паховая связка; 10 - большая поясничная мышца.

Рисунок 351. Нервы и кровеносные сосуды задней стороны бедра, правого. Большая и средняя ягодичные мышцы, а также длинная головка двуглавой мышцы бедра частично удалены. 1 - верхние ягодичные артерия и вены; 2 - верхний ягодичный нерв; 3 - грушевидная мышца; 4 - нижний ягодичный нерв; 5 - нижние ягодичные артерия и вены; 6 - квадратная мышца бедра; 7 - седалищный нерв; 8 - прободающие артерии и вены; 9 - обший мало-берцовый нерв; 10 - подколенная вена; 11 - большеберцовый нерв; 12 - задний кожный нерв бедра (отрезан); 13 - седалишный бугор; 14 - большая ягодичная мышца (отрезана и отвернута).

Рисунок 352. Нервы и кровеносные сосуды задней стороны голени, правой. Трехглавая мышца голени, а также задняя большеберцовая и малоберцоберцовые мышцы частично уда-лены. 1 - седалищный нерв; 2 - общий малоберцовый нерв; 3 - подколенная артерия; 4 -подко-ленная вена; 5 - больщееберцовый нерв; 6 - трехглавая мышца голени (отрезана и отвёрну-та); 7 - длинная мышца, сгибающая большой палец стопы; 8 - задняя большеберцовая арте-рия; 9 - мышца-длинный сгибатель пальцев стопы.

Рисунок 353. Нервы голени и стопы. Переднелатеральная сторона голени, правой. Длинная

малоберцовая мышца и разгибатель пальцев частично удалены. 1 - общий малоберцовый нерв; 2 - передняя большеберцовая артерия; 3 - передняя большеберцовая мышца (отвернута кпереди); 4 - глубокий малоберцовый нерв (стопы); 5 - поверхностный малоберцовый нерв; 6 -медиальный кожный тыльный нерв (стопы); 7-промежуточный тыльный нерв (стопы); 8 -тыльные пальцевые нервы стопы; 9 - латеральный тыльный нерв стопы; 10 - икроножный нерв; 11 - мышца-длинный разгибатель большого пальца стопы; 12 - мышца-длинный разгибатель пальцев; 13 - длинная малоберцовая мышца (разрезана).

Рисунок 354. Нервы подошвенной стороны стопы, правой. Мышца, отводящая большой палец и мышца-короткий сгибатель пальцев частично удалены. 1 - медиальные пяточные ветви; 2 - задняя большеберцовая артерия; 3 - латеральный подошвенный нерв; 4 -медиаль-ный подошвенный нерв; 5 - квадратная мышца подошвы; 6 - общие подошвенные пальцевые нервы (латерального подошвенного нерва); 7 - общие подошвенные пальцевые нервы (меди-ального подошвенного нерва); 8 - мышца, отводящая большой палец стопы.

Рисунок 355. Кожные нервы (nervi cutanei) нижней конечности. Вид спереди. 1 - передняя кожная ветвь (подвздошно-подчревною нерва); 2 - передняя кожная ветвь (подвздошно-пахового нерва); 3 - передние кожные ветви (бедренною нерва); 4 - передняя кожная ветвь запирательного нерва; 5 - подкожный нерв (ветвь бедренного нерва); 6 - медиальный тыльный кожный нерв (из поверхностного малоберцового нерва); 7 - тыльные пальцевые нервы стопы (из глубокою малоберцового нерва); 8 - латеральный тыльный кожный нерв (из икроножного нерва); 9 - латеральный кожный нерв икры (из общего малоберцового нерва); 10 - латеральный кожный нерв бедра (из поясничного сплетения); 11 - бедренная ветвь (из бедренно-полового нерва).

Поясничное сплетение, plexus lumbalis, образовано передними ветвями трех верхних поясничных (LI-LIII), частью передней ветви XII грудного (ThXII), а также передней ветвью IV поясничного (LIV) спинномозговых нервов. Другая часть передней ветви IV поясничного спинномозгового нерва спускается в полость таза, образуя вместе с передней ветвью V поясничного нерва (LV) пояснично-крестцовый ствол. Располагается поясничное сплетение кпереди от поперечных отростков поясничных позвонков в толще большой поясничной мышцы и на передней поверхности квадратной мышцы поясницы. Ветви, выходящие из поясничного сплетения, появляются из-под латерального края большой поясничной мышцы или прободают ее в латеральном направлении и далее следуют к передней брюшной стенке, к нижней конечности и наружным половым органам. Ветви поясничного сплетения:

1. Мышечные ветви, rr. musculares, короткие, начинаются от всех передних ветвей, образующих сплетение еще до их соединения между собой, и идут к квадратной мышце поясницы, большой и малой поясничным мышцам и межпоперечным латеральным мышцам поясницы.

2. Подвздошно-подчревный нерв, n. iliohypogastricus (ThXII-LI), выходит из сплетения позади большой поясничной мышцы или из ее толщи и по передней поверхности квадратной мышцы поясницы идет латерально и вниз, параллельно подреберному нерву. Располагаясь вначале на внутренней поверхности поперечной мышцы живота, подвздошно-подчревный нерв прободает эту мышцу над подвздошным гребнем и идет к прямой мышце живота между его поперечной и внутренней косыми мышцами. Подвздошно-подчревный нерв иннервирует поперечную и прямую мышцы живота, внутреннюю и наружную косые мышцы живота, а также кожу в верхнелатеральной части ягодичной области, верхнелатеральной области бедра, куда направляется его латеральная кожная ветвь, r. cutaneus lateralis. Передняя кожная ветвь, r. cutaneus anterior, подвздошно-подчревного нерва прободает переднюю стенку влагалища прямой мышцы живота в нижней его части и иннервирует кожу передней брюшной стенки над лобковой областью.

3. Подвздошно-паховый нерв, n. ilioinguinalis (ThXII-LIV), идет почти параллельно подвздошно-подчревному нерву, располагаясь книзу от последнего. Он находится между поперечной и внутренней косыми мышцами живота, затем заходит в паховый канал, где лежит кпереди от семенного канатика или круглой связки матки (у женщин). Выйдя через наружное отверстие пахового канала, нерв заканчивается в коже лобка, мошонки — передние мошоночные нервы, nn. scrotales anteriores, или большой губы — передние губные нервы, nn. labiales anteriores (у женщин). Подвздошно-паховым нервом иннервируются m. transversus abdominis, mm. obliqui abdominis internus et externus, кожа лобка и паховой области, кожа корня полового члена и передних отделов мошонки (кожа больших половых губ).

4. Бедренно-половой нерв, n. genitofemoralis (LI-LII), прободает большую поясничную мышцу и появляется на передней поверхности этой мышцы на уровне III поясничного позвонка. В толще большой поясничной мышцы или после выхода из нее бедренно-половой нерв делится на две ветви: половую ветвь, r. genitalis, и бедренную ветвь, r. femoralis.

Половая ветвь располагается впереди наружной подвздошной артерии, затем входит в паховой канал, где проходит позади семенного канатика или круглой связки матки. Эта ветвь иннервирует у мужчин мышцу, поднимающую яичко, кожу мошонки и мясистую оболочку, кожу верхнемедиальной поверхности бедра. У женщин половая ветвь разветвляется в круглой связке матки, коже большой половой губы и области подкожной щели (наружного кольца) бедренного канала.

Бедренная ветвь проходит на бедро через сосудистую лакуну, располагаясь на передне-латеральной поверхности бедренной артерии, прободает решетчатую фасцию и иннервирует кожу в области подкожной щели бедренного канала и под паховой связкой (верхняя часть бедренного треугольника).

5. Латеральный кожный нерв бедра, n. cutaneus femoris lateralis (LI-LII), выходит из-под латерального края поясничной мышцы или прободает ее и ложится на переднюю поверхность этой мышцы. Нерв идет латерально и вниз по передней поверхности подвздошной мышцы (под ее фасцией) и подходит к паховой связке у места ее прикрепления к передней верхней подвздошной ости. Далее этот нерв проходит под латеральной частью паховой связки на бедро, где вначале располагается в толще широкой фасции бедра, а затем выходит под кожу и делится на конечные ветви. Одна ветвь латерального кожного нерва бедра иннервирует кожу задненижней поверхности ягодичной области, другая — кожу латеральной поверхности бедра до уровня коленного сустава.

6. 3апирательный нерв, n. obturatorius (LII-LIV), является второй по величине ветвью поясничного сплетения. Нерв опускается вниз вдоль медиального края большой поясничной мышцы, пересекает переднюю поверхность крестцово-подвздошного сустава, идет вперед и кнаружи и в полости малого таза присоединяется к запирательной артерии, располагаясь над ней. Вместе с одноименными артерией и веной запирательный нерв проходит через запирательный канал на бедро, ложится между приводящими мышцами, отдавая к ним мышечные ветви, rr. musculares, и делится на конечные ветви: переднюю ветвь, r. anterior, и заднюю ветвь, r. posterior.

Передняя ветвь располагается между короткой и длинной приводящими мышцами, иннервирует эти мышцы, а также гребенчатую и тонкую мышцы и отдает к коже медиальной поверхности бедра кожную ветвь, r. cutaneus. Задняя ветвь запирательного нерва идет позади короткой приводящей мышцы бедра и иннервирует наружную запирательную, большую приводящую мышцы и капсулу тазобедренного сустава.

7. Бедренный нерв, n. femоralis (LI-LIV), — самая крупная ветвь поясничного сплетения. Начинается обычно тремя корешками, которые вначале идут в толще большой поясничной мышцы. На уровне поперечного отростка V поясничного позвонка эти корешки сливаются и образуют ствол бедренного нерва, по размерам значительно превосходящий остальные ветви поясничного сплетения. Дальше книзу бедренный нерв располагается под подвздошной фасцией в борозде между большой поясничной и подвздошной мышцами. На бедро нерв выходит через мышечную лакуну, затем в бедренном треугольнике располагается латерально от бедренных сосудов, будучи покрыт глубоким листком широкой фасции бедра.

Несколько ниже уровня паховой связки бедренный нерв делится на конечные ветви: мышечные, rr. musculares, передние кожные, rr. cutanei anteriores, и подкожный нерв, n. saphenus. Мышечные ветви бедренного нерва иннервируют m. sartorius, m. quadriceps femoris, m. pectineus. Передние кожные ветви в количестве от 3 до 5 прободают широкую фасцию бедра и иннервируют кожу переднемедиальной поверхности бедра.

Подкожный нерв, n. saphenus, является наиболее длинной ветвью бедренного нерва. В бедренном треугольнике подкожный нерв вначале располагается латерально от бедренной артерии, а далее переходит на ее переднюю поверхность и вместе с артерией входит в приводящий канал. Вместе с нисходящей коленной артерией нерв выходит из канала через его переднее отверстие (сухожильную щель) и ложится под портняжную мышцу. Затем подкожный нерв спускается вниз между приводящей мышцей и медиальной широкой мышцей бедра, прободает широкую фасцию бедра на уровне коленного сустава и отдает поднадколенниковую ветвь, r. infrapatellaris. Поднадколенниковая ветвь направляется вперед и латерально и иннервирует кожу в области медиальной поверхности коленного сустава, надколенника и передней поверхности верхней части голени. В том месте, где подкожный нерв идет рядом с большой подкожной веной, от этого нерва отходят медиальные кожные ветви голени, rr. cutanei cruris mediales, которые иннервируют кожу переднемедиальной поверхности голени. На стопе подкожный нерв идет по медиальному ее краю и иннервирует прилежащие участки кожи до большого пальца.

Крестцовое сплетение, plexus sacralis, образовано передними ветвями V поясничного (LV), верхних четырех крестцовых (SI-SIV) и части передней ветви IV поясничного (LIV) спинномозговых нервов. Передняя ветвь V поясничного спинномозгового нерва, а также присоединяющаяся к нему часть передней ветви IV поясничного нерва образует пояснично-крестцовый ствол, truncus lumbosacralis. Он спускается в полость малого таза и на передней поверхности грушевидной мышцы соединяется с передними ветвями I, II, III и IV крестцовых спинномозговых нервов. В целом крестцовое сплетение по форме напоминает треугольник, основание которого находится у тазовых крестцовых отверстий, а вершина — у нижнего края большого седалищного отверстия, через которое из полости таза выходят наиболее крупные ветви этого сплетения. Крестцовое сплетение находится между двумя соединительноткан-ными пластинками. Сзади от сплетения лежит фасция грушевидной мышцы, а впереди — верхняя тазовая фасция.

Ветви крестцового сплетения делятся на короткие и длинные. Короткие ветви заканчиваются в области тазового пояса, длинные ветви направляются к мышцам, суставам, коже свободной части конечности.

Короткие ветви крестцового сплетения. К коротким ветвям крестцового сплетения отно-сятся внутренний запирательный и грушевидный нервы, нерв квадратной мышцы бедра, верхний и нижний ягодичные нервы, а также половой нерв.

Первые три нерва: 1. n. [musculi obturatorii interni] obturatorius internus (LIV-SI); 2. n. [musculi] piriformis (SI-SII); 3. n. musculi quadrati femoris (LI-SIV), направляются к одноименным мышцам через подгрушевидное отверстие.

4. Верхний ягодичный нерв, n. gluteus superior (LIV-LV, SI), выходит из полости таза через надгрушевидное отверстие вместе с верхней ягодичной артерией и рядом с одноименной веной в ягодичную область, где проходит между малой и средней ягодичными мышцами. Иннервирует среднюю и малую ягодичные мышцы, а также мышцу, напрягающую широкую фасцию бедра.

5. Нижний ягодичный нерв, n. gluteus inferior (LV, SI-SII), является наиболее длинным нервом среди коротких ветвей крестцового сплетения. Из полости таза этот нерв выходит через подгрушевидное отверстие вместе с одноименной артерией и рядом с веной, седалищ-ным нервом, задним кожным нервом бедра, половым нервом. Ветви нижнего ягодичного нерва направляются к большой ягодичной мышце.

6. Половой нерв, n. pudendus (SI-SIV), покидает полость таза через подгрушевидное отверстие, огибает сзади седалищную ость и через малое седалищное отверстие входит в седалищно-прямокишечную ямку. В седалищно-прямокишечной ямке этот нерв ложится на латеральную ее стенку, идет вперед в толще фасции, покрывающей внутреннюю запиратель-ную мышцу, и делится на конечные ветви.

В седалищно-прямокишечной ямке от полового нерва отходят: нижние прямокишечные нервы, nn. rectales inferiores, направляющиеся к наружному сфинктеру заднего прохода и к коже в области заднего прохода; промежностные нервы, nn. perineales, которые иннервируют mm. ischiocavernosus, bulbospongiosus, transversi perinei (superficialis et profundus), кожу промежности, а также кожу задней поверхности мошонки у мужчин — задние мошоночные нервы, nn. scrotales posteriores, или больших половых губ — задние губные нервы, nn. labiales posteriores, у женщин. Конечная ветвь полового нерва — дорсальный нерв полового члена (клитора), n. dorsalis penis [clitoridis], вместе с дорсальной артерией полового члена (клитора) проходит через мочеполовую диафрагму и следует к половому члену (клитору). Этот нерв отдает ветви к пещеристым телам, головке полового члена (клитора), коже полового члена у мужчин, большим и малым половым губам у женщин, а также ветви к глубокой поперечной мышце промежности и сфинктеру уретры.

Длинные ветви крестцового сплетения. К длинным ветвям крестцового сплетения относятся задний кожный нерв бедра и седалищный нерв.

1. Задний кожный нерв бедра, n. cutaneus femoris posterior (SI-SIII), является чувствительной ветвью крестцового сплетения. Выйдя из полости таза через подгрушевидное отверстие, нерв направляется вниз и выходит из-под нижнего края большой ягодичной мышцы примерно на середине расстояния между большим вертелом и седалищным бугром. На бедре нерв располагается под широкой фасцией, в борозде между полусухожильной и двуглавой мышцами бедра. Его ветви прободают фасцию и разветвляются в коже заднемедиальной поверхности бедра вплоть до подколенной ямки.

У нижнего края большой ягодичной мышцы от заднего кожного нерва бедра отходят нижние нервы ягодиц, nn. [rr.] clunium inferiores, которые огибают край этой мышцы и иннер-вируют кожу ягодичной области. Промежностные ветви, rr. perineales, направляются к коже промежности.

2. Седалищный нерв, n. ischiadicus (LIV-LV), (SI-SIII), является самым крупным нервом тела человека. В его формировании принимают участие передние ветви крестцовых и двух нижние поясничных нервов, которые как бы продолжаются в седалищный нерв. В ягодичную область из полости таза седалищный нерв выходит через подгрушевидное отверстие. Далее он направляется вниз вначале под большую ягодичную мышцу, затем между большой приводящей мышцей и длинной головкой двуглавой мышцы бедра. В нижней части бедра седалищный нерв делится на две ветви: лежащую медиально более крупную ветвь — большеберцовый нерв, n. tibialis, и более тонкую латеральную ветвь — общий малоберцовый нерв, n. peroneus [fibularis] communis. Нередко деление седалищного нерва на две конечные ветви происходит в верхней трети бедра или даже непосредственно у крестцового сплетения, а иногда в подколенной ямке.

В области таза и на бедре от седалищного нерва отходят мышечные ветви к внутренней запирательной и близнецовым мышцам, к квадратной мышце бедра, полусухожильной и полуперепончатой мышцам, длинной головке двуглавой мышцы бедра и задней части большой приводящей мышцы.

Большеберцовый нерв, n. tibialis, является продолжением ствола седалищного нерва на голени и по размерам превосходит его латеральную ветвь. В подколенной ямке большебер-цовый нерв располагается посередине, непосредственно под фасцией, позади подколенной вены. У нижнего угла подколенной ямки он идет на подколенной мышце между медиальной и латеральной головками икроножной мышцы, вместе с задней большеберцовой артерией и веной проходит под сухожильной дугой камбаловидной мышцы и направляется в голенно-подколенный канал. В этом канале большеберцовый нерв спускается вниз и, выйдя из него, располагается позади медиальной лодыжки под удерживателем сгибателей. Здесь большебер-цовый нерв делится на свои конечные ветви: медиальный и латеральный подошвенные нервы.

Медиальный подошвенный нерв, n. plantaris mеdialis, больше, чем латеральный.

Зоны Захарьина-Геда — ограниченные участки кожи (зоны), в которых при заболеваниях внутренних органов часто появляются отраженные боли, а также… Деятельность спинного мозга находится под контролем головного мозга, который… Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью НС, его окончательное развитие…

Рисунок 358. Функции симпатического и парасимпатического отделов вегетативной нервной системы. Парасимпатическая нервная система 1, 2, 4, 5 — сужение; 3 — усиление секреции; 6 — замедление; 7,13 — расслабление; 8 — уменьшение; 9,11 — усиление моторики; 10 — уменьшение секреции; 12 — сокращение. Симпатическая нервная система 14, 15, 17, 18 — расширение; 16 — снижение секреции; 19 — ускорение и усиление сокращения; 20 — сокращение; 21 — усиление; 22, 24 — ослабление моторики; 23 — усиление секреции; 25 — расслабление; 26 — возбуждение.

А — сосуды головного мозга; B — зрачок; C — слюнные железы; D — периферийные сосуды; E — бронхи; F — сердце; G — мышца, поднимающая волос; H — потоотделение; I — желудок; J — печень; K — почка; L — надпочечник; M — кишечник; N — мочевой пузырь; O — половые органы.

Как видно из рисунка 358, если нервы симпатического отдела стимулируют какую-то реакцию, то нервы парасимпатического ее подавляют. Эти процессы разнонаправленного воздействия в конечном итоге взаимно уравновешивают друг друга, в результате функция поддерживается на соответствующем уровне. Действие лекарств часто направлено именно на возбуждение или торможение одного из таких противоположных по своей направленности влияний.

Рисунок 359. Функциональная модель описания вегетативной нервной системы

 

Так, под влиянием импульсов, приходящих по симпатическим нервам, учащаются и усили-ваются сокращения сердца, повышается давление крови в артериях, расщепляется гликоген в печени и мышцах, увеличивается содержание глюкозы в крови, расширяются зрачки, повышается чувствительность органов чувств и работоспособность центральной нервной системы, суживаются бронхи, тормозятся сокращения желудка и кишечника, уменьшается секреция желудочного сока и сока поджелудочной железы, расслабляется мочевой пузырь и задерживается его опорожнение. Под влиянием импульсов, приходящих по парасимпатическим нервам, замедляются и ослабляются сокращения сердца, понижается артериальное давление, снижается содержание глюкозы в крови, возбуждаются сокращения желудка и кишечника, усиливается секреция желудочного сока и сока поджелудочной железы и др.

Следующая особенность вегетативной системы состоит в том, что двигательные импульсы идут от головного или спинного мозга до органа-эффектора не по одному нейрону, как импульсы ко всем другим частям тела, а через два или большее число последователъных нейронов. Тело первого нейрона этой цепи, так называемого преганглионарного нейрона, находится в головном или спинном мозгу, а тело второго нейрона — постганглионарного — в ганглии, лежащем где-либо вне центральной нервной системы. Тела симпатических постганглионарных нейронов расположены вблизи спинного мозга, ганглии парасимпа-тическнх нервов — вблизи иннервируемых органов или даже в их стенках. Афферентные волокна от внутренних органов входят в центральную нервную систему вместе с соматическими нервными волокнами.

Симпатическая нервная система состоит из волокон, клеточные тела которых лежат в боковых столбах серого вещества спинного мозга. Их аксоны выходят через передние корешки спинномозговых нервов вместе с двигательными волокнами, идущими к скелетным мышцам, а затем отделяются от этих волокон и образуют вегетативную ветвь спинномозгового нерва, идущего к симпатическому ганглию. Эти ганглии парные; с каждой стороны спинного мозга лежит цепочка из 18 ганглиев, которая тянется от шеи до области живота. В каждом ганглии аксон первого нейрона образует синапс с дендритом второго нейрона. Тело этого второго нейрона находится внутри ганглия, а его аксон направляется к иннервируемому органу.

Кроме волокон, идущих от каждого спинномозгового нерва к соответствующему ганглию, имеются волокна, идущие от одного ганглия к следующему. Аксоны некоторых из вторичных нейронов идут от симпатического ганглия обратно к спинномозговому нерву и проходят в его составе к иннервируемым потовым железам, мышцам, поднимающим волосы, и мускулатуре стенок кровеносных сосудов. Аксоны других вторичных нейронов направляются от шейных симпатических ганглиев вверх к слюнным железам и к радужной оболочке глаза. Чувствительные волокна симпатической системы проходят внутри тех же нервных стволов, что и двигательные, но вступают в спинной мозг через задние корешки вместе с другими чувствительными нервами, не принадлежащими к вегетативной системе.

Парасимпатическая система. Это система состоит из волокон, начинающихся в головном мозгу и выходящих в составе III, VII, IХ и особенно Х (блуждающего) черепномозговых нервов и из волокон, начинающихся в крестцовом отделе спинного мозга и выходящих со спинномозговыми нервами этого отдела. Блуждающий нерв берет начало в продолговатом мозгу и спускается через область шеи в грудную и брюшную полости, где иннервирует сердце, дыхательную систему и пищеварительный тракт. Толстые кишки, мочевая система и половые органы иннервируются парасимпатическими волокнами через тазовые спинномозговые нервы. Радужная оболочка глаза, подъязычные и подчелюстные железы и околоушная железа иннервированы соответственно III, VII и IX парами черепномозговых нервов. Все эти нервы содержат аксоны первых нейронов в цепи; ганглии парасимпатической системы расположены в иннервируемых ими органах или около них, так что все аксоны вторичных нейронов сравнительно короткие.

Возбуждение симпатических нервов вызывает расширение сосудов головного мозга, кожи, периферических сосудов; расширение зрачка; снижение выделительной функции слюнных желез и усиление — потовых; расширение бронхов; ускорение и усиление сердечных сокращений; сокращение мышц, поднимающих волос; ослабление моторики желудка и кишечника; усиление секреции гормонов надпочечников; расслабление мочевого пузыря и оказывает возбуждающее действие на половые органы, также вызывая сокращение матки.

По парасимпатическим нервным волокнам отдаются «приказы», обратные по своей направленности: например, сосудам и зрачку — сузиться, мускулатуре мочевого пузыря — сократиться и так далее.

Вегетативная нервная система очень чувствительна к эмоциональному воздействию. Печаль, гнев, тревога, страх, апатия, половое возбуждение — эти чувства вызывают изменения функций органов, находящихся под контролем вегетативной нервной системы. Например, внезапный испуг заставляет сильнее биться сердце, дыхание становится более частым и глубоким, в кровь из печени выбрасывается глюкоза, прекращается выделение пищеварительного сока, появляется сухость во рту. Организм готовится к быстрой реакции на опасность и, если требуется, к самозащите.

Длительное и сильное эмоциональное напряжение и возбуждение могут привести к тяжелым заболеваниям. К ним относятся гипертензия, коронарная болезнь сердца, язвенная болезнь желудка и многие другие.

В момент, когда клетка стала сжигать больше этих веществ, чем приносит кровь при данной скорости кровотока, она сообщает вегетативной нервной системе о нарушении своего постоянного состава и отклонении от эталонного энергетического состояния. Центральные отделы вегетативной нервной системы при этом формируют управляющее воздействие, приводящее к комплексу изменений для восстановления энергетического голодания: учащению дыхания и сокращений сердца, ускорению распада белков, жиров и углеводов и так далее.

 

 

Рисунок 360. Схема взаимодействия центральной и периферической нервной системы.

Симпатический отдел вегетативной нервной системы образован двумя цепочками нервных узлов, расположенных по обе стороны от позвоночника, и нервными веточками, которые отходят от них и устремляются ко всем органам и тканям. Кроме внутренних органов, симпатические волокна иннервируют кровеносные сосуды, а также кожу. Парасимпатический отдел представлен рядом нервов; главный из них — блуждающий — иннервирует почти все органы грудной и брюшной полости. На работу внутренних органов парасимпатические и симпатические нервы оказывают противоположное действие. Если первые, к примеру, усиливают деятельность какого-нибудь органа, то вторые ослабляют ее. Вегетативные нервные волокна состоят, по крайней мере, из двух нейронов: тело первого лежит в центральной нервной системе, а второго — в нервном узле, где и происходит передача возбуждения.

Звездчатый узел – часть системы симпатических парных узлов расположенных с обеих сторон вдоль почти всего позвоночника, недалеко от его поверхности. Эту систему называют симпатическим стволом, он состоит из 20...22 парных узлов — 3 шейных, 10...12 грудных, 3...4 брюшных и 4 тавровых. Они имеют сложное строение и посредством огромного количества тончайших нервных волокон связаны не только со спинным мозгом и между собой, но и со всеми внутренними органами. Каждая группа этих узлов имеет свою «сферу влияния». Шейные иннервируют область головы и шеи, грудные — туловище и внутренние органы, поясничные — нижние конечности. Все узлы, составляющие симпатический ствол, тесно связаны с соответствующими отделами спинного и головного мозга.

Соматическая часть периферической нервной системы включает 12 пар черепных и 31 пару спинномозговых нервов.

 

Рисунок 361. Схема симпатической иннервации. C – шейные; Th – грудные; L – поясничные спинномозговые нервы. 1 – верхний шейный; 2 – средний шейный; 3 – нижний шейный; 4 – звёздчатый ганглии; 5 – солнечное сплетение; 6 – надчревный узел; 7 – сердце; 8 – лёгкое; 9 – печень; 10 – желудок; 11 – поджелудочная железа; 12 – кишечник; 13 – почка; 14 – мочевой пузырь; 15 – матка; 16 – прямая кишка.

 

 

Рисунок 362. Схема парасимпатической иннервации. III, VII, IX, X – черепные нервы, SII-SIV – крестцовые спинномозговые нервы. 1 – ресничный; 2 – крылонёбный; 3 – ушной; 4 – под-челюстной ганглий; 5 – тазовый нерв; 6 – подчревное сплетение; 7 – сердце; 8 – лёгкие; 9 – печень; 10 – желудок; 11 – поджелудочная железа; 12 – кишечник; 13 – почка.

Рисунок 363. Симпатический ствол (truncus sympaticus) и его ветви. Вид справа. Пристеночный листок плевры и внутригрудная фасция удалены. Правое легкое оттянуто вперед. 1 - блуждающий нерв; 2 - общая сонная артерия; 3 - средний шейный (симпатический) узел; 4 - шейногрудной (звездчатый) узел (симпатический); 5 - симпатический ствол; 6 - верх-няя полая вена; 7 - непарная вена; 8 - правый блуждающий нерв; 9 - брюшная часть аорты; 10 - большой внутренностный нерв; 11 - малый внутренностный нерв; 12 - переднее желудоч-ное сплетение (вегетативное); 13 - чревное сплетение; 14 - соединительные ветви симпати-ческого ствола; 15 - пищеводные (симпатические) нервы; 16 - грудные сердечные (симпати-ческие) нервы; 17 - правая подключичная артерия (отрезана); 18 - плечевое сплетение; 19 -шейное сплетение; 20 - верхний шейный (симпатический) узел.

Рисунок 364. Брюшное аортальное сплетение (plexus aorticus abdominalis) и другие вегетативные сплетения брюшной полости и таза. Вид спереди и немного справа. Печень, желудок, а также брюшина и правый мочеточник удалены. 1 - чревное сплетение; 2 - верхнее брыжеечное сплетение; 3 - брюшное аортальное сплетение; 4 - нижнее брыжеечное сплете-ние; 5 - верхнее подчревное сплетение; 6 - прямая кишка; 7 - мочепузырное сплетение; 8 - пра-вое нижнее подчревное сплетение; 9 - крестцовое сплетение; 10 - правая обшая подвздошная артерия; 11 - поясничное сплетение; 12 - симпатический ствол; 13 - аорто-почечный узел; 14 -надпочечниковое сплетение; 15 - большой внутренностный нерв.

Рисунок 365. Головной отдел парасимпатической части вегетативной нервной системы. 1 -добавочное ядро глазодвигательного нерва; 2 - тройничный узел; 3 - верхнее слюноотделитель-ное ядро; 4 - нижнее слюноотделительное ядро; 5 - блуждающий нерв; 6 - барабанный нерв; 7 -околоушная слюнная железа; 8 - барабанная струна; 9 - поднижнечелюстной узел; 10 -поднижнечелюстная слюнная железа; 11 - подьязычная слюнная железа; 12 - ушной узел; 13 -малый каменистый нерв; 14 - большой каменистый нерв; 15 - крылонебный узел; 16 -соединительная ветвь со скуловым нервом; 17 - ресничная мышца; 18 - мышца, суживающая зрачок; 19 - слезная железа: 20 - короткие ресничные нервы; 21 - ресничный узел; 22 -глазодвигательный корешок (парасимпатический).