рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Масштабы

Масштабы - раздел Геология, Инженерна геодезия Масштаб – Отношение Длины Линии На Плане К Соответствующей П...

Масштаб – отношение длины линии на плане к соответствующей проекции этой линии на местности.

а) Численный масштаб– число, правильная дробь, в числителе – единица, знаменатель – степень уменьшения изображения.

Пример: Масштаб 1:1 000 – 1 сантиметру карты (плана) соответствует 1 000 сантиметров на местности или 10 метров. Масштаб 1:100 000 – 1 см карты соответствует 100 000 см местности или 1 000 м.

б) Линейный масштаб– графический чертеж (рис.4.1). Расстояние между большими отрезками постоянное и называется основанием масштаба. Обычно выбирают основанием отрезок в 2 см.

 

200 160 120 80 40 0 200 400 600 800 метров

 


Масштаб 1: 10 000

Рис. 4.1. Линейный масштаб

Для масштаба 1: 10 000: в 1 см 100 м, в 2 см 200 м.

Левая часть делится на 10 частей, каждая часть делится еще пополам. Для данного масштаба одно маленькое деление соответствует 10 метрам.

Для определения расстояний по карте (плане) циркулем переносят на линейный масштаб (рис. 4.2) расстояние и оценивают его.

200 160 120 80 40 0 200 400 600 800 метров  
 
Пример: 400 + 90 = 490 м

 

 

Рис. 4.2. Пример определения расстояния по карте

в) Поперечный масштаб– применяют для более точного определения длин отрезков

2 см
200 0 200 400 600 800
А
В
Рис. 4.3. Поперечный масштаб

 

 

     


 

 

Рис. 4.4. Принцип определения наименьшего деления поперечного масштаба

На прямой линии (рис.4.3) откладывают отрезки по 2 см (основание масштаба). Вверх по перпендикуляру откладывают на равном расстоянии 10 равных частей. Левая часть полученного прямоугольника делится 10 наклонными линиями (трансверсалями). Наименьшее деление поперечного масштаба (рис.4.4) равен 1/10 части левой шкалы.

Пример 1: для масштаба 1:10 000, в 1 см 100 м, в 2 см 200 м. Одно деление слева от 0 - 20 м, одно деление при подъеме вверх по трансверсали - 2 м.

Расстояние АВ: по 200 м – 3 деления, по 20 м – 3 деления, по 2 м – 4 деления. Итого: 600 м + 60 м + 8 м = 668 м.

Пример 2: для масштаба 1:25 000, в 1 см 250 м, в 2 см 500 м. Одно деление слева от 0 - 50 м, одно деление при подъеме вверх по трансверсали - 5 м.

Расстояние АВ: по 500 м – 3 деления, по 50 м – 3 деления, по 5 м – 4 деления. Итого: 1500 м + 150 м + 20 м = 1670 м.

Наименьшее расстояние, различаемое глазом, 0,1 мм. Точностью масштаба называют горизонтальное расстояние на местности, соответствующее в данном масштабе 0,1 мм плана. Так для масштаба 1:5 000 в 1 см – 50 м, в 1 мм – 5 м, в 0,1 мм – 0,5 м. Для 1:5 000 точность масштаба 0,5 м.

Предельная точность масштаба 0,2 мм (точность, различаемая глазом 0,1 мм, и точность применяемых измерительных приборов 0,1 мм), т.е. для масштаба

1:5 000 это 1 м.

– Конец работы –

Эта тема принадлежит разделу:

Инженерна геодезия

Федеральное агентство по образованию.. Южно-Уральский государственный университет.. Кафедра Градостроительство..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Масштабы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ИнженернАЯ геодезиЯ
Учебное пособие   Челябинск Издательство ЮУрГУ УДК 528.48 (076.5) + 528,4 (075.8) М636   Одобрено учеб

Краткая историческая справка о развитии Геодезии
Возникновение геодезии относится к глубокой древности. Известно, что в государствах Ближнего Востока за несколько тысячелетий до н.э. была создана сложная ирригационная система. За 2150 лет до н.э.

Предмет и задачи геодезии
Геодезия – наука об измерениях на земной поверхности, проводимых для определения формы и размеров Земли, изображения земной поверхности в виде планов, карт и профилей, для решения инженерных и наро

Математические модели поверхности Земли, применяемые в геодезии
1. Если бы Земля была бы однородной, неподвижной и подвержена только действию внутренних сил тяготения, она имела бы форму шара(рис.1.2).     &

Система географических (астрономических) координат
j l а Э

Система геодезических координат
В L А Э

Прямая и обратная геодезические задачи. Их применение в геодезическом производстве
х1 х2 у1

Основы математической обработки геодезических измерений
Геодезические измерения определяют относительное положение точек земной поверхности. Различают следующие виды измерений: 1) линейные – получают наклонные и горизонтальные расстоян

Геодезические планы, карты
План– чертеж, представляющий собой уменьшенное и подобное изображе­ние ее проекции на горизонтальную плоскость (рис. 5.1, а). На плане длины линий, углы, площади контуров

Условные знаки на планах, картах, геодезических и строительных чертежах
Для обозначения на планах и картах различных предметов местности применяют специально разработанные условные знаки. Условные знаки делятся на: а) контурные (масшт

Номенклатура топографических планов и карт
Номенклатура – система разграфки и обозначений топографиче­ских планов и карт. В основу номенклатуры карт на территории Российской Федерации положена международная разграфка листов карты м

Основные формы рельефа
а) Гора, холм (рис. 5.16) – куполообразная или коническая возвышенность земной поверхности Вершина

Горизонтали
Горизонталь - замкнутая кривая линия, все точки которой имеют одну и ту же высоту над начальной уровенной поверхностью Свойства горизонталей: - точки, лежащие на одной и то

Уклон линии. Графики заложений
Уклон i линии – отношение превышения h к заложению линии d (рис. 5.22). Уклон – мера крутизны ската. Например, h = 1 м, d = 20 м. i = 1/20 = 0,05. Уклоны выражаются в процентах i

Задачи, решаемые по карте
      Склонение на 2005 г. восточное 6°12¢. Среднее сближение меридианов западное 2°

Методы, схемы, точность и плотность пунктов при создании сети
- триангуляция (рис. 6.1) применяется в открытой местности:     Рис. 6.1. Триангуляция - полигонометрия (рис. 6.2) применяется в закрытой местности:

Схемы, методы, точность и плотность пунктов при создании сети
Схемысоздания сети:   Рис. 6.7. Схема нивелирования I – IV классов: Линии нивелирования I класса Линии нивелирования II

Измерение линий лентой
- провешивание линий   Рис. 7.1. Измерение линии лентой Измеренное расстояние вычисляется по формуле , (7.1) где Д – расстояние между точками,

Измерения расстояния нитяным дальномером
d f d¢

Дальномерные определения расстояний
- b2   Д2

Принцип измерения горизонтальных и вертикальных углов
Угловые измерения необходимы при развитии триангуляционных се­тей, про­кладывании полигонометрических, теодолитных и высотных ходов, выполнении то­пографических съемок и решении многих геодезически

Основные части теодолита
Основными частями теодолита являются: лимб или горизонтальный круг, алидада, зрительная труба, цилинд­рический уровень, подставки, вертикальный круг, подъемные винты. Лимб (рис.8.3)

Изучение устройства теодолита типа Т30
При изучении устройства теодолита следует обратить внимание на работу наводящих винтов: они должны занимать среднее положение, чтобы была воз­можность перемещения подвижных частей теодолита вправо

Измерение горизонтальных и вертикальных углов
Работа по измерению углов на станции выполняется в следующем порядке: Индекс алидады в)

Порядок работы на станции
- При КЛ, при закрепленном лимбе, поворачивают алидаду, пока по ГК будет отсчет 0°0¢; - при закрепленной алидаде пово

Порядок работы на станции
- При КЛ, при закрепленном лимбе, поворачивают алидаду, пока отсчет по ГК будет 0° 0¢; - при закрепленной алидаде поворачивают лимб, пока центр сетки будет наведен н

Камеральные работы при обработке результатов измерений
а) Обработка журналов. Составление схемы теодолитных ходов Камеральные работы начинают с проверки полевых журналов. Затем на бумаге по средним значениям углов и длинам линий составляют схе

Топографические съемки
Съемка местности – совокупность угловых и линейных измерений, выполняемых на земной поверхности для создания плана, карты или профиля. Съемки делятся на: - наземные (теодолитная,

Нивелирование. Назначение. Методы нивелирования
Нивелирование– процесс геодезических измерений для определения пре­вышения точек одной над другой и высот точек над уровнем моря. Назначение – для определ

Устройство, поверки и юстировка нивелира
а) Устройство нивелиров Линия визирования у нивелира приводится в горизонтальное положение двумя способами: 1) с помощью элевационного винта и цилиндрического уровня при тр

Элементы закруглений. Разбивка главных точек круговой кривой
В местах поворота трассы производят разбивку закруглений. Рис. 9.15. Разбивка главных точек круговой кривой: R- радиус кривой; НК – начало кривой; СК –

Детальная разбивка кривых
Х1 У1 У2

Нивелирование трассы
пк0 пк1 пк2

Камеральные работы при трассировании линейных сооружений
1. Проверка полевого журнала: вычисление превышений, средних превышений. Вычисляют сумму превышений по ходу между исходными реперами Σhизм. Теоретическую сумму вычис

Основные элементы разбивочных работ
Разбивочными работами называются геодезические построения, имеющие це­лью определение на местности положения сооружения и его частей в плане и по высоте в соответствии с проектом. Разбивоч

Строительной площадки
Для выноса на местность строительной площадки и основных осей здания (рис. 10.7) прокладывают теодолитный ход с расчетом, что с точек хода будут вынесены площадка и оси здания. Точки хода закрепляю

Передача отметок на дно котлована и на этаж
  а) Передача отметки на этаж а b

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Основной 1. Федоров, В.И. Инженерная геодезия / В.И. Федоров, П.И. Шилов.– М.: Недра, 1982. 2. Курс инженерной геодезии / Под ред. В.Е. Новака – М.: Недра, 1989. 3. Митин

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги