Денудационно-аккумулятивные структуры почвенного покрова как формы проявления педолитогенеза

Денудационно-аккумулятивные структуры почвенного покрова как формы проявления педолитогенеза. В классификации СПП В. М. Фридланда 1984 выделен разряд денудационно-аккумулятивных СПП, к числу которых почвенно-эрозионные, русловые и солифлюкционные структуры распространены наиболее широко.

Ежегодно 90 мобилизуемого при механической денудации материала идёт на формирование различного рода континентальных отложений, определённые фации которых сложены перемещенными почвенными массами, активизированными процессами денудации и содержащими углерод гумусовых веществ, азот и другие элементы биофилы.

Такого рода отложения М. А. Глазовская 2000 называет педолитоседиментами. Степень смытости почв, материал которых формирует педолитоседименты, зависит не только от крутизны и протяженности эродируемого склона, но и от гранулометрического состава почвообразующих пород. Исследования проведённые под руководством Паулюкавичуса в Прибалтийской провинции дерново-подзолистых почв М. А. Глазовская 2000 использовала для характеристики эрозионно-аккумулятивных СПП моренных ландшафтов.

Гумусовые и элювиальные горизонты почв рассматриваемой территории имеют более легкий гранулометрический состав, чем иллювиальные, поэтому они повсеместно смыты на склонах. Из этого материала формировались делювиальные педолитоседименты, представленные легкими и средними пылеватыми супесями. С глубиной содержание гумуса в ряде разрезов увеличивается, что может быть следствием участия в образовании седимента на разных этапах смыва почв вначале грубогумусовых и гумусово-элювиальных горизонтов АО, А1 , а затем бедных гумусом элювиальных А2 и переходных к иллювиальным А2В рис. 2 . На поверхности седимента сформировался гумусовый горизонт современной дневной дерновой почвы серого цвета с непрочной мелкокомковатой структурой, в естественном состоянии густо принизанный тонкими корнями.

Эти дерновые почвы различаются по степени гумусности, насыщенности основаниями, наличию или отсутствию оглеения. Такие почвы Глазовская называет как дерновые почвы на мало- или среднегумусных, насыщенных или ненасыщенных, супесчаных педолитоседимантах.

Палеопедологические данные показывают, что процессы заполнения педолитоседиментами начальных звеньев палеогидросети балок, оврагов, лощин, западин оживлялось в периоды похолоданий и развития мерзлотно-солифлюкционных процессов, и ослаблялись в периоды потеплений и улучшения климатических условий. То есть, при упрощении фитоценотических структур ландшафтов активизируется эрозионная деятельность, трансаккумулятивные и аккумулятивные элементы рельефа получают материал за счет размыва вышележащих почв, причем с течением Рисунок 2 - Продольные профили склонов холмов с почвенными разрезами Глазовская М. А 2002 1 - песок 2 - моренная супесь 3 - супесчаный педолитоседимент 4 - легкий моренный суглинок 5 - почвенные горизонты 6 - крутизна 7 - разрезов. времени гумусированность поступающего материала уменьшается.

Современные агроландшафты способствуют широкому развитию эрозии почв и переотложению в гидросеть делювиального материала.

Кроме педолитоседиментов в сложении участвуют не только гумусовые горизонты , Глазовская выделяет педоседименты, формирующиеся за счет гумусовых горизонтов и педолитоциклиты - педолитоседименты солифлюкционного и делювиального происхождения, аккумуляция которых на протяжении позднего плейстоцена и голоцена прерывалась периодами формирования на их поверхности ныне погребенных почв. ПП ландшафта составляет его кровлю, верхнюю часть литологических слоев.

Морфоскульптура ландшафта формируется с поверхности за исключением явлений типа карста и суффозии путем действия дуалистического единства денудации и аккумуляции. Выходит, что практически любое заметное изменение топологии ландшафта приводит к трансформации почв через их смыв или намыв. Даже медленный крип образование делей сказывается на ПП, вызывает турбации, изменение свойств почв, а за ними и растительных сообществ. Собственно и суффозионная просадка хотя и закладывается под землей приведёт к увеличению увлажнения фаций связанных с этой просадкой, а, следовательно, и большему гидроморфизму почв. Изменение рельефа чаще всего вызывается двумя группами факторов тектоническими и климатическими в последнее время и антропическими. Первые ведут к изменению базиса эрозии, а соответственно к усиленной денудации, или аккумуляции.

Вторые сказываются на растительном покрове через сумму осадков и температур хотя по достижении определенных значений переходят в качество и непосредственно действуют на почвы например, криогенез, что в сказывается на защищенности поверхности от эродируемости, проявлении криогенных процессов и др. И те и другие выводят ландшафт из стационарного состояния, в которое он и возвращается. Пользуясь принципом стремления системы к равновесному состоянию можно предсказать, каким станет ландшафт после того или иного воздействия, что произойдёт с ПП. 2.5 Ландшафтно-геохимические системы Ландшафты являются трехмерными телами ограниченными снизу региональным водоупором или местным базисом стока.

Именно в них происходит современная миграция вещества, объединяющая ПТК в ландшафтно-геохимические системы ЛГС различной протяжности и сложности. Совокупность взаимосвязанных физических, физико-химических, биохимических процессов, обусловливающих миграцию и дифференциацию химических элементов в ЛГС может быть объединена в особый класс ландшафтно-геохимических процессов ЛГП , под которыми М. А. Глазовская 1988 понимает совокупность взаимосвязанных биогеохимических, физико-химических, физических явлений, в результате совместного действия которых в ландшафтной сфере как целостной геохимической системе и ее подсистемах идут при воздействии солнечной энергии и внутренней энергии Земли постоянное возобновление живого вещества, трансформация органических, органоминеральных и минеральных соединений, сопровождающиеся пространственной дифференциацией химических элементов.

Эти процессы разделяются на три главные фазы 1 мобилизацию химических элементов 2 транслокацию элементов 3 аккумуляцию химических элементов.

В зависимости от пространственной разобщенности этих фаз и миграционного пути ЛГП могут быть разделены на а внутрикомпонентные внутрипочвенные б внутриландшафтные элементарные радиальные в внутриландшафтные катенарные латеральные г межландшафтовые бассейновые межбассейновые внутриконтинентальные и межконтинентальные глобальные Глазовская, 1991 . Для группировки территориальных ландшафтно-геохимических единиц М. А. Глазовская 1976 вводит понятия об элементарных и каскадных ландшафтно-геохимических системах.

Элементарная ландшафтно-геохимическая система - это часть территории, в пределах которой качественный состав и напряженность миграционных потоков вещества между компонентами ландшафта обладают сходством в той степени, в какой это приводит к формированию одинаковой разности почв. Циклы миграции в ЭЛГС не вполне замкнуты часть элементов задерживается в отдельных блоках системы, часть выносится за ее пределы, связывая данную единицу с другими.

Последнее приводит к формированию каскадных ландшафтно-геохимических систем КЛГС , состоящих из совокупности ЭЛГС, находящихся на различных гипсометрических уровнях поверхности Земли и связанных между собой потоками вещества.

ЭЛГС, представляющие начальные, наиболее высоко расположенные звенья каскадной системы - геохимически автономны. ЭЛГС образующие более низкие ступени КЛГС, геохимически подчинены лежащим выше по рельефу, т. е. гетерономны.

КЛГС весьма многообразны. Они могут быть открытыми - с конечным сбросом веществ в моря и океаны, и закрытыми - с конечными звеньями в бессточных впадинах, где формируются почвы засоленного ряда. По соотношению площадей начальных и конечных звеньев каскадные системы разделяются на линейные, веерные или системы рассеяния и арены или системы концентрации. 2.6