Scheffe

 

 

 

Fl N Subset for alpha = .05
1.00 5.0000  
2.00 7.0000 7.0000
3.00   9.0000
Sig.   .178 .178

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 5.000.

Результаты демонстрируют отсутствие статистически достоверных разли­чий дисперсий 1 и 2 (Sig. = 0 ,17 8), 2 и 3(Sig. = 0 ,17 8) выборок, что убеж­дает в корректности парных сравнений средних значений.


ЧАСТЬ II. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ

МНОГОФАКТОРНЫЙ ANOVA

Многофакторный ANOVA предназначен для изучения влияния несколь­ких факторов (независимых переменных) на зависимую переменную и часто обозначается в соответствии с количеством факторов и числом их градаций. Например, обозначение ANOVA 3x2x2 свидетельствует о трехфакторном ANOVA (число градаций: первого фактора — 3, второго фактора — 2, третьего фактора — 2), который применяется для сравнения 12 групп (условий) (так как 3x2x2 = 12).

Принципиально этот метод не отличается от однофакторного ANOVA. Однако он позволяет оценивать не только влияние (главные эффекты) каж­дого фактора в отдельности, но и взаимодействие факторов: зависимость вли­яния одних факторов от уровней других факторов. Возможность изучать вза­имодействие факторов — главное преимущество многофакторного ANOVA, которое позволяет получать зачастую наиболее интересные результаты иссле­дования.

С целью облегчения изложения материала в качестве основного варианта многофакторного ANOVA мы сначала рассмотрим двухфакторный его вари­ант (2-Way ANOVA), а затем сделаем необходимые дополнения в отношении большего количества факторов.

Структура исходных данных (2-факторный ANOVA). Для каждого объекта (испытуемого) выборки измерено значение зависимой переменной (Y), а также определена его принадлежность к одной из градаций (уровней) одного фак­тора х) и к одной из градаций (уровней) другого фактора 2). Таблица ис­ходных данных для компьютерной обработки включает две номинативные переменные, соответствующие факторам, и одну метрическую (зависимую) переменную:

 

№ объектов Хх (Фактор I) Х2 (Фактор 2) ^(Зависимая переменная)
       
N

Модель для данных может быть представлена в виде дисперсионного комп­лекса ~ таблицы, строки которой соответствуют градациям (уровням) одного фактора: 1, 2, ...,/, ...,к; а столбцы — уровням другого фактора: 1, 2,...,/,..., /. Количество ячеек дисперсионного комплекса равно kxl и соответствует ко­личеству разных групп объектов (испытуемых). Каждая ячейка с номером ij характеризуется своим сочетанием уровней факторов, численностью объек­тов Пу и средним значением зависимой переменной Му. Например, дисперси­онный комплекс для ANOVA 2x3:


ГЛАВА 13. ДИСПЕРСИОННЫЙ АНАЛИЗ (ANOVA)

 

 

 

Фактор А Фактор В  
Мп Мп М13 мм
Мп М22 м мА2
  мп мт мю м

Математическая модель двухфакторного ANOVA, как и в однофакторном случае, предполагает выделение двух основных частей вариации зависимой переменной: внутригрупповой, обусловленной случайными причинами, и межгрупповой, обусловленной влиянием факторов. В межгрупповой измен­чивости, в свою очередь, выделяются три ее составляющие:

□ влияние (главный эффект) 1-го фактора;

П влияние (главный эффект) 2-го фактора;

П взаимодействие факторов.

Соответственно, двухфакторный ANOVA включает в себя проверку трех гипотез: а) о главном эффекте 1-го фактора; б) о главном эффекте 2-го факто­ра; в) о взаимодействии факторов.

Проблема взаимодействия факторов, которая обеспечивает уникальность и незаменимость многофакторного ANOVA, заслуживает отдельного рассмот­рения. Понятие взаимодействия двух независимых факторов было введено основателем дисперсионного анализа Р. Фишером для обозначения ситуации, когда влияние одного фактора на зависимую переменную проявляется по-раз­ному на разных уровнях другого фактора.

ПРИМЕР 13.4 (Солсо Р., МакЛин М. К., с. 58-59)__________________________

Студентам колледжа предложили написать сочинение в поддержку закона о само­управлении, противниками которого все они являлись. Испытуемым либо давали задание написать такое сочинение (условие без выбора), либо предлагали самим выбирать — писать или не писать (условие с выбором) (фактор А: 2 уровня). Кроме того, половине испытуемых в каждой из групп платили по 0,5$, а другой полови­не — 2,5$ за написание этого сочинения (фактор В: 2 уровня). В каждую из 4-х групп случайно отбиралось по 10 студентов. Зависимой переменной являлась сте­пень изменения отношения студентов к закону о самоуправлении после написа­ния сочинения. Средние значения изменения отношения для различных групп:

 

 

 

Фактор А Фактор В Средние
0,5$ (1) 2,5$ (2)
Нет выбора (1) -0,05 +0,63 0,29
Свободный выбор (2) +1,25 -0,07 0,59
Средние: 0,6 0,28 0,44

Результаты (рис. 13.1) демонстрируют взаимодействие факторов: размер вознаграждения (фактор В) по-разному влияет на изменение отношения — в зависимости от наличия или отсутствия свободного выбора (фактор А).



 


Рис. 13.1.График средних значений изменения отношения к закону о самоуправлении (к данным примера 13.4)

В условиях отсутствия выбора отношение испытуемых к закону о самоуправ­лении улучшилось в случае большего вознаграждения; в условиях же свобод­ного выбора наблюдалась обратная картина: более хорошее отношение про­демонстрировали те, кто получил меньшее вознаграждение.

ПРИМЕР 13.5_____________________________________________________________________

Предположим, изучается влияние на успешность группового решения задачи чис­ленности группы и наличия или отсутствия лидера в группе. Зависимая перемен­ная — время решения задачи в минутах. Фактор А — размер группы, три градации: 1 — 2—3 человека; 2 — 5—7 человек; 3—10-15 человек. Фактор В — наличие лидера: 1 — есть; 2 — нет. В качестве объектов выступают группы. В зависимости от стиля лидерства, сложности задания и других причин, которые не учитываются, можно было бы получить разные эффекты взаимодействия факторов численности группы и наличия лидерства (рис. 13.2). График 1 демонстрирует сильное взаимодействие факторов (группы большей численности более эффективны, если в них есть лидер, а группы малой численности — при отсутствии лидера), а график 3 — более слабое взаимодействие (наличие лидера играет роль лишь в группах большой численнос­ти). Графики 2 и 4 соответствуют ситуации отсутствия взаимодействия.




 



ГЛАВА 13. ДИСПЕРСИОННЫЙ АНАЛИЗ (ANOVA)





 


Рис. 13.2. Графики средних значений успешности группового решения задачи

(к данным примера 13.5)

Приведенные примеры демонстрируют эффективность визуального ана­лиза графиков средних значений: если линии, соответствующие разным уров­ням одного из факторов, не параллельны, то можно предполагать наличие взаимодействия факторов. Однако окончательное заключение об этом мож­но сделать только при статистическом подтверждении гипотезы о взаимодей­ствии по результатам ANOVA. Таким образом, графики средних значений особенно полезны для интерпретации обнаруженного статистически досто­верного взаимодействия факторов.

Исходные предположения многофакторного ANOVA: распределение зави­симой переменной в сравниваемых генеральных совокупностях (соответству­ющих ячейкам дисперсионнго комплекса) характеризуется нормальным за­коном и одинаковыми дисперсиями. Выборки в каждой ячейке являются случайными и независимыми.

Ограничения: если выборки (ячейки) заметно различаются по численности и их дисперсии различаются статистически достоверно, то метод неприме­ним. Число наблюдений в каждой ячейке не должно быть меньше 2 (желатель­но — не менее 5). Проверка допустимости применения ANOVA сводится к про-


ЧАСТЬ П. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ

верке однородности дисперсии в сравниваемых выборках в случае, если они заметно различаются по численности. Для проверки однородности диспер­сии применяется критерий Ливена (Levene's Test of Homogeneity ofVariances).

Дополнительно возможны множественные сравнения средних значений, позволяющие сделать вывод о том, как различаются друг от друга средние зна­чения, соответствующие разным градациям факторов.

Общая схема двух- (и более) факторного ANOVA принципиально не отли­чается от однофакторного случая и определяется выделением в общей измен­чивости зависимой переменной (SStol) ее внутригрупповой (случайной, SSwg) и межгрупповой (факторной, SSbg) составляющих:

SStot= S^wg + SSfrg.

Отличие заключается в выделении дополнительных составляющих меж­групповой (факторной) изменчивости в соответствии с проверяемыми гипо­тезами. Для двухфакторного случая:

SSf,g = SSA + SSB + SSAb,

где SSA, SSB — суммы квадратов для факторов Аи В, a SSAB — сумма квадратов для взаимодействия факторов. Соответственно, для каждого источника из­менчивости далее вычисляются степени свободы и средние квадраты, вычис­ляются /'-отношения для проверяемых гипотез и определяютсяр-уровни зна­чимости.

Последовательность вычислений основных показателей для двухфакторного ANOVAрассмотрим на упрощенном примере — при равной численности срав­ниваемых выборок (объектов в ячейках). Для случая с неравной численнос­тью наблюдений в ячейках логика и общая последовательность вычислений не меняются, хотя сами вычисления и становятся более громоздкими.

 

 

 

Фактор А Фактор В  
2
Ми Ми   мм
  мп м23  
  ма   мвъ м

Численность каждой ячейки равна п, общее число наблюдений — 6/7 = N.

Напомним, что двухфакторный ANOVA проверяет 3 статистические гипо­тезы: а) о главном эффекте фактора А (о различии Мм и МА2); б) о главном эффекте фактора В (о различии Мт, Mm и Мвз); в) о взаимодействии факто­ров Аи В (влияние фактора А различается для разных уровней фактора В, и наоборот).

Межгрупповая (SSbg) и внутригрупповая (SS^) суммы квадратов вычисля­ются как составные части общей суммы квадратов (SSlot):


ГЛАВА 13. ДИСПЕРСИОННЫЙ АНАЛИЗ (ANOVA)

где к — число уровней фактора А; I — число уровней фактора В; Мо — среднее значение для ячейки ij.

Отношение межгрупповой и общей суммы квадратов — коэффициент де­терминации. Как и в однофакторном случае, он показывает долю общей дис­персии зависимой переменной, которая обусловлена совокупным влиянием факторов (факторной моделью):

Чем больше этот показатель, тем больше общая дисперсия зависимой пе­ременной объясняется влиянием изучаемых факторов. Межгрупповая сумма квадратов состоит из трех составляющих ее сумм квадратов: для фактора А, для фактора В, для взаимодействия факторов Аи В: