рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Взрывающиеся звзды

Взрывающиеся звзды - раздел Астрономия, Эволюция взглядов о рождении звёзд Взрывающиеся Звзды. Тот, Кто Внимательно Следит За Звздами Из Ночи В Ночь, Им...

Взрывающиеся звзды. Тот, кто внимательно следит за звздами из ночи в ночь, имеет в своей жизни шанс обнаружить новую звезду, возникшую как бы на пустом месте. Блеск такой звезды постепенно увеличивается, достигает максимума и через несколько месяцев ослабевает настолько, что она становится невидимой даже вооруженным глазом, исчезает. Ещ более грандиозное, но чрезвычайно редкое небесное явление, получившее название сверхновой звезды, запечатлено во многих исторических летописях разных народов. Блеск сверхновой, вспыхивавшей тоже вроде бы на пустом месте, иногда достигал такой величины, что звезду было видно даже днм. Явления новых звезд были обнаружены еще в глубокой древности.

В ХХ в когда астрономические наблюдения приобрели регулярный характер, а вид звездного неба протоколировался на фотопластинках, стало ясно, что на месте новых звезд на самом деле находятся слабые звездочки. Просто внезапно их блеск увеличивается до своего максимума и затем вновь уменьшается до спокойного уровня.

Более того, оказалось, что иногда явление новой звезды повторяется более или менее регулярно на одном и том же месте, т.е. одна и та же звезда по каким-то причинам раз в сотни лет или чаще увеличивает свою светимость. Иначе обстоит дело со сверхновыми. Если на их месте до начала вспышки и была заметна звезда как, например, в случае относительно яркой сверхновой 1987 г. в Большом Магеллановом Облаке, то после вспышки она действительно исчезает, а сброшенная ею оболочка еще долгие годы наблюдается как светящаяся туманность.

Исследования сверхновых звезд, вспыхнувших в нашей галактике, затрудняются тем, что эти небесные объекты чрезвычайно редко доступны наблюдениям. За всю историю науки их удалось увидеть всего несколько раз. Однако регулярные наблюдения множества других галактик приводят к ежегодному обнаружению до нескольких десятков сверхновых в далеких звездных системах. Установлено, что в среднем в каждой галактике вспышка сверхновой происходит раз в несколько десятилетий.

Причем в максимуме своего блеска она может быть столь же яркой, как остальные сотни миллиардов звезд галактики, вместе взятые. Самые далекие из известных ныне сверхновых находятся в галактиках, расположенных в сотнях мегапарсек от Солнца. Как впервые предположили в 30-е гг. ХХ в. Вальтер Бааде и Фриц Цвикки, в результате взрыва сверхновой может образоваться сверхплотная нейтронная звезда. Эта гипотеза подтвердилась после открытия пульсара быстро вращающейся нейтронной звезды с периодом 33 миллисекунды в центре известной Крабовидной туманности в созвездии Тельца он возник на месте вспышки сверхновой 1054 г. Итак, явления новых и сверхновых звезд имеют совершенно различную природу.

Каково же современное представление о них Новые звезды. Во время вспышки блеск новой увеличивается на 12-13 звездных величин, а выделяемая энергия достигает 1039 Дж такая энергия излучается Солнцем примерно за 100 тыс. лет. До середины 50-х гг. природа вспышек новых звезд оставалась неясной.

Но в 1954 г. было обнаружено, что известная новая звезда DQ Геркулеса входит в состав тесной двойной системы с орбитальным периодом в несколько часов. В дальнейшем удалось установить, что все новые звезды являются компонентами тесных двойных систем. В которых одна звезда как правило, звезда главной последовательности типа нашего Солнца, а вторая компактный, размером в сотую долю радиуса Солнца, белый карлик. Орбита такой двойной системы настолько тесна, что нормальная звезда сильно деформируется приливным воздействием компактного соседа.

Плазма из атмосферы этой звезды может свободно падать на белый карлик, образуя вокруг него аккреционный диск. Вещество в диске тормозится вязким трением, нагревается, вызывая свечение именно оно и наблюдается в спокойном состоянии, и в конце концов достигает поверхности белого карлика. По мере падения вещества на белом карлике образуется тонкий плотный слой газа, температура которого постепенно увеличивается.

В итоге как раз за характерное время от нескольких лет до сотен лет температура и плотность этого поверхностного слоя вырастают до столь высоких значений, что столкновения быстрых протонов начинают приводить к термоядерной реакции синтеза гелия. Но в отличие от центральных частей Солнца и других звзд, где эта реакция протекает достаточно медленно, на поверхности белого карлика она носит взрывообразный характер главным образом из-за очень большой плотности вещества.

Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки кстати, весьма малой массы всего около сотой доли массы Солнца, разлет и свечение которой наблюдаются как вспышка новой звезды. Несмотря на огромную выделенную энергию, разлетающаяся оболочка не оказывает заметного воздействия на соседнюю звезду, и та продолжает поставлять топливо для следующего взрыва. Как показывают оценки, ежегодно в галактике вспыхивает около сотни новых звзд. Межзвздное поглощение делает невозможным наблюдение всех этих объектов.

Но самые яркие новые довольно часто бывают видны невооруженным глазом. К примеру, в 1975 г. новая звезда в созвездии Лебедя почти полгода искажала его крестообразную конфигурацию. С началом эры рентгеновской астрономии 60-е гг. выяснилось, что новые звезды наблюдаются не только в оптическом диапазоне. Так, в 70-е гг. были открыты рентгеновские барстеры регулярно вспыхивающие источники рентгеновского излучения.

Механизм вспышек здесь в целом такой же, как и у классических новых звезд. Разница в том, что второй компонент тесной двойной системы не белый карлик, а еще более компактная нейтронная звезда радиусом всего около 10 км. Вещество нормальной звезды типа Солнца или красного карлика срывается приливными силами со стороны нейтронной звезды, образуя аккреционный диск. Газ попадает на поверхность нейтронной звезды, если она не обладает сильным магнитным полем, нагревается, и это приводит к повторяющимся термоядерным взрывам.

А из-за большой компактности нейтронной звезды плотность вещества, достигшего поверхности, оказывается чудовищно высокой. Разогретый термоядерными взрывами газ излучает в основном энергичные рентгеновские кванты. Наконец, нельзя не упомянуть еще об одном типе новых звезд - рентгеновских новых. Они вспыхивают в рентгеновском диапазоне на несколько месяцев, а затем полностью исчезают. Сейчас таких рентгеновских новых известно около десяти.

Самое волнующее открытие последних лет, сделанное совместными усилиями астрономов России, Украины и других стран, состоит в том, что во всех рентгеновских новых компактными звездами являются, по-видимому. Черные дыры массой около 10 масс Солнца. Это хорошо согласуется с теорией относительности Эйнштейна, по которой масса черных дыр в звездных системах должна быть не менее 3-5 солнечных. Так как черные дыры не имеют поверхности, на которой могло бы скапливаться аккрецируемое вещество, природа вспышки здесь уже иная, чем у классических новых звезд и рентгеновских барстеров.

Как полагают, вспышка рентгеновской новой связана с внезапным гигантским энерговыделением в окружающем черную дыру аккреционном диске. Выяснение причины такого неустойчивого поведения дисков одна из актуальных задач современной астрофизики. Сверхновые звезды. Сверхновые звезды одно из самых грандиозных космических явлений. Коротко говоря, сверхновая это настоящий взрыв звезды, когда большая часть ее массы а иногда и вся разлетается со скоростью до 10000 кмс, а остаток сжимается коллапсирует в сверхплотную нейтронную звезду или в черную дыру. Сверхновые играют важную роль в эволюции звезд.

Они являются финалом жизни звезд массой более 8-10 солнечных, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более легких элементов и элементарных частиц при взрывах массивных звезд.

Не здесь ли кроется разгадка извечной тяги человечества к звездам Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга По наблюдаемым характеристикам сверхновые принято разделять на две большие группы сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода зависимость их блеска от времени так называемая кривая блеска примерно одинакова у всех звезд, как и светимость в максимуме блеска.

Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр формы их кривых блеска весьма разнообразны блеск в максимуме сильно различается у разных сверхновых. Ученые заметили, что в эллиптических галактиках т.е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звезд вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идет активный процесс звездообразования и много молодых массивных звезд.

Эти особенности наводят на мысль о различной природе двух типов сверхновых. Сейчас надежно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии порядка 1046 Дж. Основная энергия взрыва уносится не фотонами, а нейтрино быстрыми частицами с очень малой или вообще нулевой массой покоя.

Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны. Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учета всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращается в гелий, затем гелий в углерод и так далее до образования элементов железного пика железа, кобальта и никеля.

Атомные ядра этих элементов имеют максимальную энергию связи в расчте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и останавливается на элементах железного пика. Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным около 1,5 массы Солнца В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу.

Во-первых, это развал ядер железа на 13 альфа-частиц ядер гелия с поглощением фотонов так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества захват электронов протонами с образованием нейтронов.

Оба процесса становятся возможными при больших плотностях свыше 1 тсм3, устанавливающихся в центре звезды в конце эволюции, и оба они эффективно снижают упругость вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запаснную в коллапсирующем ядре. В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды собственно взрыв не так-то просто объяснить.

Скорее всего существенную роль в этом процессе играют нейтрино. Как свидетельствуют компьютерные расчты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время запертыми внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла.

Из опыта хорошо известно, что лгкая жидкость стремится всплыть из-под тяжелой здесь проявляется так называемая неустойчивость Рэлея-Тейлора. Этот механизм вызывает гигантские конвективные движения, и когда, в конце концов, импульс нейтрино передатся внешней оболочке, она сбрасывается в окружающее пространство. Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой.

Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 кмс. столь большие пространственные скорости отмечены у молодых нейтронных звзд радиопульсаров. Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления.

А теоретические предсказания, основанные на данной модели особенно касающиеся полной энергии и спектра нейтральной вспышки, оказались в полном согласии с зарегистрированным 23 февраля 1987г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке. Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звздах, лишенных водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфара-Райе фактически это ядра массивных звзд, богатые гелием, углеродом и кислородом.

Здесь рассказано лишь о наиболее мощных взрывах, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звзд, основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем заглянуть в самое пекло сверхновой, скрытое огромными толщами непрозрачного для света вещества.

Ещ более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звзд и чрных дыр.

– Конец работы –

Эта тема принадлежит разделу:

Эволюция взглядов о рождении звёзд

Одни и те же звзды указывали путь финикийским мореплавателям и каравеллам Колумба, созерцали с высоты Столетнюю войну и взрыв ядерной бомбы в … Одним людям виделись в них глаза богов и сами боги, другими - серебряные… Другие народы верили, что жизнь на Земле прекратится, как только созвездие Гончих Псов догонит Большую Медведицу.…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Взрывающиеся звзды

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Из чего образуются звзды
Из чего образуются звзды. Ещ Гершель обнаружил на фоне Млечного Пути тмные провалы, которые он называл дырами в небесах. В конце XIX в. на Ликской обсерватории США астроном Эдуард Барнард начал сис

Жизнь черного облака
Жизнь черного облака. Молекулярные облака устроены значительно сложнее, чем знакомые нам облака водяного пара в земной атмосфере. Снаружи молекулярное облако покрыто толстым слоем атомарного газа,

Основные звездные характеристики
Основные звездные характеристики. Чтобы любоваться звздным небосводом, совсем не обязательно описывать все звзды и выяснять их физические характеристики они красивы сами по себе. Но если рассматрив

Молодые звздные коллективы
Молодые звздные коллективы. Большой интерес представляют не только индивидуальные молодые звзды, но и их коллективы. Молодые звзды сконцентрированы вблизи экваториальной плоскости Галактики, что со

Как устроена звезда и как она живт
Как устроена звезда и как она живт. Звзды не останутся вечно такими же, какими мы их видим сейчас. Во Вселенной постоянно рождаются новые звзды, а старые умирают. Чтобы понять, как эволюционирует з

Конец жизненного пути звезды
Конец жизненного пути звезды. Большую часть своей жизни звезда находится на так называемой главной последовательности диаграммы цвет светимость диаграммы Герцшпрунга-Ресселла. Все остальные стадии

Нейтронные звзды
Нейтронные звзды. быстро вращаются периоды вращения измеряются миллисекундами и обладают сильным магнитным полем. Вращение вместе с магнитным полем создают мощные электрические поля, которые вырыва

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги