рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Космические объекты: Пульсары

Космические объекты: Пульсары - раздел Астрономия, С О Д Е Р Ж А Н И Е. 1. Новый Радиотелескоп В Кембридже. 2. ...

С О Д Е Р Ж А Н И Е. 1. Новый радиотелескоп в Кембридже. 2. Открытие первого пульсара (рассказывает Джоселин Белл) . 3. Пульсары имеет малые размеры. 4. Можно ли увидеть пульсары? 5. Пульсар в Крабовидной туманности - видимая звезда. 6. Что такое пульсары? 7. Томас Голд объясняет пульсары. 8. Вопросы на которые нет ответов. а) действительно ли пульсары нетронные звезды. б) есть ли у пульсаров планеты. в) как образуются пульсары.

Сообщение, опубликованное в феврале 1968 года в английском журнале "Nature", было столь удивительно, что его тут же подхватила вся мировая пресса. Группа ученых Кембриджа, руководимая Энтони Хьюишем, извещала о том, что ей удалось принять радиосигналы из глубин вселенной.После второй мировой войны начался расцвет радиоастрономии. Космический газ - межзвездное вещество - обладает способностью испускать и поглощать излучения в области радиочастот.

Подобно свету, это излучение проходит сквозь земную атмосферу и может служить дополнительным источником информации о Вселенной. Исследуя космическое радиоизлучение, можно получать сведения о свойствах межзвездного вещества в нашей Галактике; удается также принимать и анализировать радиоизлучение межзвездного газа в других звездных системах. Галактики, дающие особенно интенсивное радиоизлучение, получили название радиогалактик.Приходящее к нам радиоизлучение испытывает влияние вещества, выбрасываемого Солнцем и движущегося в межпланетном пространстве к границам Солнечной системы.

Наблюдаемые из-за этого временные флуктуации радиоизлучения во многом подобны мерцанию света звезд, обусловленному движениями воздушных масс в атмосфере.Именно для исследования подобных флуктуаций, обусловленных межпланетным веществом, и был предназначен радиотелескоп, строительство которого было начато в Кембридже в 60-е годы. На площади в два гектара было установлено более двух тысяч отдельных антенных элементов.

Поскольку с помощью этого антенного поля пред полагалось исследовать флуктуации излучения радиоисточников, вызванные солнечным ветром, приемное устройство было рассчитано на регистрацию быстрых изменений приходящего радиоизлучения.Прежние радиотелескопы не давали такой возможности, и по этому кембриджский радиотелескоп как будто специально был приспособлен для открытия быстропеременных сигналов от пульсаров - открытие, которое отодвинуло на второй план ту задачу, ради которой радио телескоп был построен: исследования флуктуаций радиоизлучений, обусловленных солнечным ветром.

Поскольку поворачивать гигантскую антенну невозможно, подобный радиотелескоп принимает радиоизлучение из узкой полосы небесной сферы, которая проходит над антенной радиотелескопа, пока Земля совершает свое суточное вращение. В июле 1967 года строительство было закончено и начались наблюдения.Круглые сутки регистрировалась интенсивность приходящего радиоизлучения с длиной волны 3.7 метра.

За неделю на 210 метрах диаграммной ленты само писец рисовал кривые интенсивности излучения от 7 участков неба. Усилия были направлены на поиск стабильных радиоисточников, из лучения которых "мерцают", взаимодействуя с солнечным ветром.Наблюдениями на телескопе и трудоемкой обработкой результатов занималась аспирантка Джоселин Белл. Ее интересовали быстрые флуктуации радиоизлучений от космических источников, попадающих в поле зрения телескопа при суточном вращении Земли. Девять лет спустя Джоселин Белл в своей речи на одном из приемов вспоминала о том времени, когда она под руководством Хьюиша работала в Кембридже над диссертацией.

Она рассказывала о выходящей из-под пера самописца нескончаемой ленте, которую ей приходилось просматривать. После первых трех десятков метров она научилась распознавать радиоисточники, мерцающие из-за солнечно го ветра, и отличать их от радиопомех земного происхождения. "Через шесть или восемь недель после начала исследований я обратила внимание на какие-то отклонения сигнала, зарегистрированного самописцем.

Эти отклонения не очень походили на мерцания радиоисточника; не были они похожи и на земные радиопомехи.Кроме того, мне вспомнилось, что подобные отклонения мне однажды встречались и раньше, когда регистрировалось излучение от этого же участка неба. " Дж. Белл хотела вернуться к этой записи, но ее задержали другие дела. Только в конце октября 1967 года она вновь занялась этим явлением и попыталась записать сигнал с бо лее высоким временным разрешением.

Однако источник на этот раз найти не удалось: он вновь дал о себе знать лишь к концу ноября. "На ленте, выходящей из-под пера самописца, я видела, что сигнал состоит из ряда импульсов. Мое предположение о том, что импульсы следуют один за другим через одинаковые промежутки времени, подтвердилось сразу же, как только лента была вынута из прибора. Импульсы были разделены интервалом в одну и одну треть секунды.Я тотчас же связалась с Тони Хьюишем, который читал в Кембридже лекцию для первокурсников.

Первой реакцией его было заявить, что импульсы - дело рук человеческих. Это было естественно при данных обстоятельствах. Однако мне почему-то казалось возможным, что сигнал может идти и от какой-нибудь звезды.Все-таки Хьюиш заинтересовался происходящим и на другой день пришел на телескоп как раз в то время, когда источник входил в поле зрения антенны - и сигнал, к счастью, появился снова. " Источник со всей очевидностью имел неземное происхождение, поскольку сигнал появлялся каждый раз когда телескоп оказывался на этот участок неба. С другой стороны, импульсы выглядели так, как будто их посылают люди. Быть может, это представители неземной цивилизации? Едва ли, в прочем, сигнал шел от планеты, обращающейся вокруг звезды.

В этом случае расстояние между соседними импульсами изменялось бы сообразно с периодом обращения планеты, поскольку расстояние до радиоисточника было бы непостоянно. " Незадолго до Рождества я предложила Тони Хьюишу выступить на конференции и на самом высоком научном уровне поставить вопрос о том, каким образом следует истолковать эти результаты.

Мы не верили, что сигналы посылает какая-то чужая цивилизация, однако такое предположение однажды высказывалось, и у нас не было доказательств, что мы имеем дело с радиоизлучением естественного происхождения.Если же допустить, что где-то во вселенной нами были обнаружены живые существа, то возникала любопытная проблема: как следует обнародовать эти результаты, что бы это было сделано со всей ответственностью? Кому первому сообщить об этом? В тот день мы так и не решили эту проблему: я отправилась до мой в полной растерянности.

Мне нужно было писать свою диссертацию, а тут откуда-то взялись эти окаянные "зеленые человечки", которые выбрали именно мою антенну и рабочую частоту телескопа, чтобы установить связь с землянами.Подкрепившись ужином, я вновь отправилась в лабораторию, чтобы проанализировать еще несколько лент. Незадолго до закрытия лаборатории я просматривала запись, относящуюся к совершенно к другому участку неба и на фоне сигнала от мощного радиоисточника Кассиопея А заметила знакомые возмущения.

Лаборатория закрывалась, и мне пришлось идти, однако я знала, что именно этот участок неба рано утром будет в поле зрения телескопа.Из-за холода что-то испортилось в приемном устройстве нашего телескопа. Конечно, так всегда и бывает! Однако я пощелкала выключателем, побранилась, посокрушалась, и минут пять установка работала нормально.

И это были те самые пять минут, когда появились возмущения. На этот раз возмущения имели вид импульсов, следующих через 1,2 секунды. Я положила ленты на стол Тони и отправилась праздновать Рождество.Какая удача! Было совершенно невероятно, чтобы "зеленые человечки" из двух разных цивилизаций выбрали одну и ту же волну и то же время для посылки сигналов на нашу планету". Вскоре Джоселин Белл обнаружила еще два пульсара, а в конце января 1968 года было послано сообщение в журнал "Nature". В нем шла речь о первом пульсаре.

Более всего пульсары поразили астрономов тем, что интенсивность их излучения изменялась чрезвычайно быстро. У наиболее быстрых переменных звезд период, с которым изменяется их блеск, может составлять один час или того меньше. Блеск белого карлика в двойной звездной системе Новой 1934 года в созвездии Геркулеса изменяется с периодом 70 секунд - но пульсары оставили этот ре корд далеко позади.На это указывали и исследования, проведенные в последующие месяцы: с чем более высоким временным разрешением регистрировались импульсы, тем яснее просматривалось их тонкая структура, показывавшая, что интенсивности радиоизлучений изменяется за десятитысячные доли секунды. По скорости изменения интенсивности излучения можно оценить размеры той области пространства, из которой оно исходит.

Рассмотрим для простоты полусферу, удаленную от наблюдателя на столь большое расстояние, что и невооруженным глазом, и в телескоп оно выглядит просто точкой.

Пусть на поверхности сферы происходит очень короткая вспышка света.Что же видит удаленный наблюдатель? Излучение распространяется от сферы со скоростью света. Поскольку расстояние от наблюдателя до различных точек сферы не одинаково, излучение, одновременно испущенное всеми точками сферы, приходит к наблюдателю в различные моменты времени: вначале поступает сигнал от центра "видимого диска", который ближе всего к наблюдателю, затем от окружающей его области, и, наконец, от краев.

Таким образом, регистрируемый наблюдателем импульс "размазывается" он имеет большую длительность, чем исходный короткий импульс света. Продолжительность импульса увеличивается на то время, за которое свет проходит расстояние, равное радиусу сферы.Сказанное можно распространить не только на короткие световые импульсы, но и на любые изменения яркости свечения сферы, поскольку сигнал, соответствующий, как уменьшению, так и увеличению яркости, доходит до наблюдателя от различных точек сферы за неодинаковое время. "Размазывание" сигнала будет наблюдаться и в том случае, когда форма излучающего объекта отличается от сферической.

Таким образом, если регистрируемые изменения яркости источника происходят, скажем, за десятитысячные доли секунды, то из этого следует, что размеры источника не могут быть существенно больше того расстояния, которое свет проходит за это время, то есть 30 км. Если бы источник имел большие размеры, то изменения яркости "размазывались" бы на более длительное время.

В пределах одного импульса интенсивность изменяется в течение одной десяти тысячной доли секунды; это видно по крутым фронтам зубцов. Поскольку радиоизлучение распространяется со скоростью света, из этого можно заключить, что объект, от которого исходит импульс, имеет в поперечнике не больше нескольких сотен километров. Подобные размеры чрезвычайно малы по сравнению с теми, с которыми мы привыкли иметь дело во Вселенной.Диаметр белых кар ликов составляет несколько десятков тысяч километров; диаметр Земли равен примерно 13 тыс. км. Таким образом, сигналы пульса ров несут сведения о том, насколько малы те области пространства во вселенной, из которых исходит это чрезвычайно интенсивное радиоизлучение.

Вскоре из разных мест земного шара стали поступать сообщения о вновь открываемых пульсарах.Сегодня их известно более трех сот. Периоды их лежат в пределах от 0,0016 секунд (у PSR 1937+21) до 4,3 секунды (у PSR 1845-19) . Буквы PSR обозначают слово "пульсар", далее даются прямое восхождение в часах (195h 0) и минутах (375m0) и склонение в градусах (-195о0) . Известно шестнадцать пульсаров, периоды которых менее 12 миллисекунд.

Самый далекий пульсар находится на расстоянии 1,3 кпк. Самый близкий пульсар отдален от Земли примерно на 60 пк (в десятки раз дальше, чем ближайшие звезды) , а самый далекий зафиксирован на расстоянии около 25 кпк, т.е. далеко за центром Галактики.Естественно предположить, что пульсары образуются и в других галактиках. Пока открыли по одному короткопериодическому пульсару в Большом и Малом Магеллановых Облаках.

Девятнадцать пульсаров найдено в шаровых скоплениях. Хотя по форме отдельные импульсы не вполне повторяют друг друга, период пульсара отличается высоким постоянством. Иногда импульсы пропадают, но после возобновления приема следуют в точности в прежнем ритме.Впоследствии удалось записать отдельные импульсы с более высоким разрешением. При этом выяснилось, что они обладают еще более тонкой структурой, чем показано на рисунке 2. Рекордная быстрота изменения интенсивности составляет 0.8*105-60 секунды.

Это означает, что излучение исходит из области, не превышающей 250 метров в поперечнике.Уже в первый год после открытия пульсаров обнаружилось, что период многих из них постепенно увеличивается: со временем пульсары становятся "медленнее". Однако частота следования импульсов изменяется очень незначительно: чтобы период пульсара удвоился должно пройти примерно 10 млн. лет. Что же представляют собой пульсары? Находятся ли они вблизи Солнечной системы или также далеки от нас, как другие галактики? Легко видеть, что пульсары располагаются среди звезд нашего Млечного Пути. Мы уже знаем, что светлая полоса Млечного Пути, которую мы видим на небе, это множество звезд, расположенных в нашей Галактике.

Особенно много звезд удается различить, если смотреть по направлению к центру Галактики.Если нанести на кар ту звездного неба все известные пульсары, то они окажутся распределенными среди звезд нашей галактики, преимущественно в районе Млечного Пути. Таким образом, пульсары распределены в пространстве так же, как и звезды: они равномерно размещаются среди звезд.

Это значит, что проходит не одна тысяча лет, пока сигналы от нескольких пульсаров достигнут земных радиотелескопов.Соответственно, из лучения пульсаров должно иметь невероятную интенсивность, чтобы его, несмотря на гигантские расстояния, можно было зарегистрировать на Земле. И эта энергия исходит из области, диаметр которой не превышает 250 метров! Как только был открыт первый пульсар и его местонахождения на небесной сфере было точно определено, этот участок неба стали исследовать оптическими телескопами.

Звезда, координаты которой попали в область, указанную радиоастрономами, оказалась самой обыкновенной. По всей видимости, она не имела ничего общего с приходящим по этому направлению радиоизлучением.Сам же пульсар оставался невидимым.

Осенью 1968 года были обнаружены сигналы с периодом всего лишь 0.03 секунды от пульсара в Крабовидной туманности. Сигналы пульсара шли из облака, образованного остатками Сверхновой 1054 года, отмеченной в китайских и японских летописях.Нельзя ли отождествить с пульсаром какой-либо из звездноподобных объектов Крабовидной туманности? Как же определить, является ли невидимая звезда источником пульсирующего радиоизлучения или нет? Быть может, оптическое излучение от звезды тоже пульсирует? Однако человеческий глаз неспособен заметить пульсации света от столь слабого источника. Не особенно выручает и фотографические методы: в том месте, где на фотопластинку попадает свет звезды она засвечивается вне зависимости от того, пульсирует попадающий на нее свет или нет. Поэтому, чтобы выявить пульсации видимого излучения звезды, приходится применят специальные методы.

С телескопом соединяют телевизионную камеру, и оптическое изображение передается на два телеэкрана.Период импульсов радиоизлучения нам уже известен; в течение одной половины периода изображение поступает на экран А, а в течение другой половины - на экран В. Если видимое излучение объекта пульсирует в том же ритме, что и радиоизлучение, то может в принципе получиться так, что импульс будет всегда наблюдаться на экране А, а на экране В изображение поступает в те промежутки, когда импульса нет. Те источники, свет которых пульсирует с иной периодичностью, будут иметь на обоих эк ранах одинаковую яркость.

Остается, таким образом, только сравнить изображения на двух экранах, чтобы выяснить, не изменяется ли видимая яркость какой-либо звезды с тем же периодом, что радиоизлучение.

То, что пульсар в Крабовидной туманности видимая звезда удалось обнаружить описанным выше методом. Используемая аппаратура работала по аналогичному принципу, только исследовался не весь участок неба сразу, а каждая звезда по отдельности.Вместо того чтобы наблюдать звезду на нескольких телеэкранах, ее свет направляли поочередно на счетчики фотонов в соответствии с периодом пульсара Крабовидной туманности.

Схема подобного измерения иллюстрируется на рис. 6. Если свет звезды не пульсирует, то все счетчики отмечают примерно одинаковое число световых квантов. Если же от звезды идут вспышки с той же периодичностью, что и у сигналов пульсара, то будут срабатывать те счетчики, которые задействованы в момент прихода светового импульса; остальные же датчики ничего не регистрируют.Таким образом, за достаточно долгое время показания счетчиков, на которые приходится "активная" доля периода, будут большими, а показания остальных счетчиков, в которые попадает лишь фоновый свет от темного ночного не ба, остаются почти на нуле. Как говорят, подобная система счетчиков "накапливает" импульс.

В ноябре 1968 года два молодых астронома, Уильям Джон Кок и Майкл Дисней, решили провести три ночных дежурства на 90-санти метровом телескопе обсерватории Стюарда в Тусоне (штат Аризона) . Ни тот ни другой не имели еще опыта астрономических наблюдений, и они хотели воспользоваться ночными дежурствами, чтобы познакомиться с работой на телескопе.

Они еще размышляли о том, что именно будут наблюдать, когда в начале декабря в журнале "Science" появилось сообщение об открытии пульсара в Крабовидной туманности. Это натолкнуло молодых астрономов на мысль попытаться обнаружить видимое излучение пульсара, тем более, что необходимая для этого электронная аппаратура уже имелась в институте.Дональд Тейлор построил эту аппаратуру для совершенно других целей и воспользовался ею как "приданым", чтобы быть включенным в группу наблюдателей.

Итак, в отношении техники все было в порядке. И хотя никаких гарантий успеха не было - никому ведь еще не удавалось отождествить пульсар с видимой звездой Кок и Дисней имели возможность познакомиться с работой на телескопе, а Тейлор - испытать свои приборы.К началу января измерительная аппаратура была смонтирована на горе Китт-Пик (в 70 км от города Тусона) , и 11 января те лескоп был впервые направлен на Крабовидную туманность.

Для каж дой звезды измерения проводились в течение 5000 периодов пульсара, причем за каждый период световой сигнал распределялся последовательно между несколькими счетчиками. Но ни одна звезда в исследованной области не давала накопления импульса на счетчиках, и 12 января Тейлор вернулся в Тусон. Помогать Коку и Диснею остался Роберт Мак-Каллистер, обслуживающий электронную аппаратуру. 12 января погода начала портиться, а результатов все не было. Еще две ночи, отведенные на это исследование, пропали из-за плохой погоды, и все предприятие, казалось, было обречено на неудачу.

Как часто все решает случай! Уильям Тиффт - наблюдатель, чье дежурство начиналось с 15 января, уступил незадачливым новичкам ночи 15 и 16 января, чтобы они смогли вновь попытать счастья.Здесь предоставим слово самому Диснею. "Пятнадцатого днем было облачно, но к вечеру небо проясни лось. Мы начали ровно в 20 часов.

Тейлор был еще в Тусоне; Кок и я сменяли друг друга у телескопа, а Мак-Каллистер работал с аппаратурой Тейлора. Для начала мы сделали замер от темного неба, в стороне от звезд. Для следующего измерения мы выбрали звезду, которую Вальтер Бааде обозначил как центральную звезду Крабовидной туманности. Всего тридцать секунд потребовалось для того, чтобы прибор показал нарастающее накопление импульса на счетчиках.Заметен был и слабый вторичный импульс, отстоящий от главного примерно на половину периода; он был значительно шире и не такой высокий.

В то время как Мак-Каллистер продолжал спокойно обслуживать аппаратуру, мы с Коком поминутно переходили от истерического возбуждения к глубочайшей депрессии.Действительно ли это пульсар или просто какие-то ложные аппаратурные эффекты? Ведь частота пульсара была в точности равна половине промышленной частоты переменного тока в США. Но при повторном измерении импульс вновь появился во всей своей красе, и настроение под куполом обсерватории поднялось.

В 20.30, через полчаса после начала наблюдений, позвонил Тейлору. Он отнесся к моему сообщению скептически и предложил изменить кое-что в аппаратуре, чтобы устранить возможные ошибки. Лишь на следующую ночь, наблюдая своими глазами за накоплением импульса, он перестал сомневаться. В 1.22 появились облака. Наблюдения были окончены.У трех наблюдателей в обсерватории не было ни малейшего сомнения в том, что им посчастливилось открыть первый оптический пульсар". Теперь и другие астрономы стали искать подтверждения открытия.

После открытия пульсара в Крабовидной туманности стало ясно, что пульсары каким-то образом связаны со взрывами сверхновых. По-видимому, сигналы пульсары идут от того объекта, который ос тается на месте взрыва сверхновой. Это предположение подтверждается и другим пульсаром, излучение которого исходит из области, где наличие газовых масс указывает на происшедший ранее взрыв сверхновой.Этот взрыв, по всей вероятности, произошел очень давно, задолго до аналогичного события в Крабовидной туманности.

В созвездии Паруса разлетающиеся газовые массы выглядят уже не как компактное пятно, а как отдельные "нити", имеющие большую протяженность. Период этого пульсара на 0,09 секунды больше периода пульсара в Крабовидной туманности. Это третий из самых быстрых известных пульсаров. (После открытия миллисекундных радиопульсаров его место 5-6) . С самого начала велся поиск этого объекта в видимой области спектра.Но успеха удалось добиться лишь в 1977 году: письмо, полученное 9 февраля редакцией журнала "Nature", в котором говорилось об отождествлении пульсара в созвездии Паруса с видимой звездой, было подписано двенадцатью авторами.

Отметим, что наряду с этими двенадцатью учеными, работающими в Англии и Австралии, в предшествующие восемь лет многие астрономы на лучших телескопах мира занимались поисками видимой звезды, "мигающей" в том же ритме, что и пульсар в созвездии Па руса. Так что становится ясно, сколь масштабному всемирному бдению был объявлен отбой этой заметкой. Между прочим, Майкл Дисней, участвовавший в открытии оптического пульсара в Крабовидной туманности, входил и в эту группу ученых.

У всех остальных пульсаров нет и следа излучения в видимой области. Это наводит на следующую мысль. Что бы ни представляли собой пульсары, они возникают в результате взрыва сверхновой. Вначале период пульсара мал - еще меньше, чем у пульсара в Крабовидной туманности.Такой пульсар излучает не только в радиодиапазоне, но и в видимой области спектра.

С течением времени частота импульсов уменьшается. Не более чем за тысячу лет период пульсара становится равным периоду пульсара в Крабовидной туманности, а затем достигает и периода пульсара в созвездии Паруса.Наряду с увеличением периода ослабевает и интенсивность излучения в видимой области. Когда период пульсара превышает одну секунду, его оптическое излучение давно уже исчезло, и его удается обнаружить лишь по импульсам в радиодиапазоне.

Поэтому с видимыми источниками отождествлены лишь два пульсара с самыми коротки ми периодами. Они относятся к самым молодым пульсарам, и вокруг них удается даже различить газовые облака - останки сверхновых.Более старые пульсары давно уже растратили свою способность излучать в видимой области. Но что же такое пульсары? Что остается, когда жизнь звезды заканчивается гигантским взрывом? Мы уже знаем, что пространственная область, из которой исходит излучение пульсара, должна быть очень малой.

Какие же процессы могут происходить в столь малой области так быстро и с такой регулярностью, чтобы можно было привлечь их к объяснению феномена пульсара? Быть может, это звезды которые, подобно цефеидам, периодически "раздуваются" и вновь сжимаются? Но в таком случае плотность звездного вещества должна быть очень высокой, так как лишь тогда период осцилляций может быть достаточно мало (вспомним, что период изменения блеска цефеид составляет несколько суток) . Нас же интересуют объекты, которые способны осциллировать с периодом сотые доли секунды.

Даже самые плотные из звезд, белые карлики, не способны совершать столь быстрые колебания. Возникает во.

– Конец работы –

Используемые теги: Космические, объекты, пульсары0.065

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Космические объекты: Пульсары

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Анализ правил землепользования и застройки в части видов разрешенного использования територии проектируемого объекта Архитектурно-градостроительные решения. Классификационные признаки проектируемого объекта SWOT-анализ проекта (пример). Анализ рынка недви
Государственное образовательное учреждение...

Имущественные права как объекты гражданских прав. Понятие и виды объектов гражданских прав
Понятие и виды объектов гражданских прав...

Объект управления (управляемый объект)
Гомельский государственный... Технический университет им П О Сухого...

Космические объекты: Система Сатурна
Если вначале использовали космические методы для исследования Земли, то со временем появилась возможность исследовать и другие небесные объекты.… Одним из ярчайших примеров этого успеха явились программы "Пионер" и… Этим Сатурн отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос,…

Объект и предмет ТГП Каждая наука имеет свой объект и предмет исследования
Теория государства и права наука и учебная дисциплина изучающая право и... ТГП одна из наиболее сложных учебных дисциплин изучаемых на первом курсе Она насыщена обобщениями абстрактными...

Предмет и задачи дисциплины. Правовое и нормативно- методическое обеспечение классификации объектов недвижимости. Общая классификация объектов недвижимости
Предмет и задачи дисциплины Правовое и нормативно методическое обеспечение классификации объектов недвижимости... Общая классификация объектов недвижимости... Теоретические и методологические основы типологии недвижимости...

Билет 1. Объект и предмет теории коммуникации Объект науки – некоторый элемент, объективно существующей реальности, которую данная наука выбирает для изучения
Коммуникация эффективное опосредованное субъект субъектное синхронное и диохронное взаим е в ходе которого от одного субъекта к другому... Объект науки некоторый элемент объективно существующей реальности которую... Объект существует независимо от процесса познания и от факта наличия самой науки...

Космические объекты: Солнечная система
Глава 1: Происхождение Солнечной системы (гипотеза О. Ю. Шмидта) Вселенная настолько грандиозна, что в ней почетно играть даже скромную роль. Х а р… Сопоставляя многочисленные данные наблюдений с физическими процессами, которые… Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных…

Космические объекты: Плутон
Это значит, что Плутон примерно таких же размеров, как и Марс. Более точная оценка диаметра планеты была сделана в 1950 году Дж. Койпером,… Двенадцать обсерваторий следили за блеском звезды, но он не ослабел ни на… Это означало, что диаметр Плутона не превосходит 5500 км. Еще труднее было определить массу Плутона. До 1978 года…

Космические объекты: Звезды
Энергия вещества, которое падает на протозвезду под действием силы тяготения, превращается в тепло. В результате температура внутри протозвезды все… Насколько долгого — это зависит от размера звезды в начале этого процесса, но… Но не все звезды в точности такие, как Солнце. Самое явное различие — это цвет. Есть звезды красноватые или…

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Классификация объектов. Тактика оснащения объектов системами охранной сигнализации Объекты подгрупп Б I и Б II – это объекты, хищения на которых в соответствии с уголовным законодательством Республики Беларусь могут привести к… Объекты подгруппы А I - объекты особо важные, повышенной опасности и… Объекты подгруппы А-II (специальные помещения объектов особо важных и повышенной опасности): - депозитарии, хранилища…
  • Характеристика РЭСИ как объекта теории надежности. Основные показатели безотказности для невосстанавливаемых объектов При расчетах и анализе надежности широко используются термины «элемент» и «система». Под элементом понимается часть сложного объекта, которая имеет… В соответствии с ГОСТ 27.002-89 надежность трактуется как свойство объекта… Исправное состояние. Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или)…
  • Космические объекты: Звезды. Размеры, плотность Результаты таких вычислений полностью подтвердились, когда стало возможным измерять угловые диаметра звезд при помощи оптического прибора звездного… Самыми малыми среди обычных звезд являются красные карлики.Массы их и радиусы… У близкого к нам и яркого Сириуса (имеющего радиус вдвое больше солнечного) есть спутник, обращающийся вокруг него с…
  • Космические объекты: Физическая природа комет Газ и пыль, входящие в состав головы, под действием давления солнечного излучения и корпускулярных потоков образуют хвост кометы, всегда… С удалением от Солнца вид и яркость кометы меняются в обратном порядке, и… На расстоянии Земли от Солнца комета не горячее чем Земля. Русский ученый Ф. А. Бредихин (1831-1904) разработал…
  • Космические объекты: Планета Венера Она совершает один оборот по орбите вокруг Солнца за 225 земных суток.Собственное вращение Венеры необычно: длительность одного оборота превышает… В 1761 году Ломоносов, наблюдая прохождение планеты по диску Солнца,… Совершенствование техники астрономических наблюдений, использование поляриметрических и стереоскопических измерений,…