УРАВНЕНИЕ ПАУЛИ

 

Будем искать оператор в виде

=аa1a2 .

При коммутации с его член bmc2 даст нуль, ибо b антикоммутирует с a1 и a2, а значит, коммутирует с их произведением. Поэтому

.

Используя перестановочные соотношения для aj , найдем

 

.

Сравнивая с нужным результатом, найдем а = -, и потому

a1a2.

Учитываем явный вид матриц aj :

 

,

а также то, что s1s2=is3 :

 

.

Аналогично вычисляются :

.

 

Оператор квадрата спина есть

,

так как s2j=1. Таким образом,

 

.

 

С другой стороны, из перестановочных соотношений для операторов момента мы в свое время получали

 

,

 

где S-значение спинового момента. Сравнивая с 3/42, находим

 

S = /2,

 

т.е. уравнение Дирака описывает частицы со спином 1/2 (электрон, позитрон, мюон, протон, нейтрон и т.д.). Для описания нейтрино, у которых тоже S= 1/2, уравнение Дирака нужно модифицировать, так как у них m = 0.

Вернемся к уравнению Клейна-Гордона - релятивистскому уравнению второго порядка, которому должна подчиняться любая волновая функция. Из него было ранее получено уравнение непрерывности

+ divj= 0,

где

r = {y*(Ñy)-(Ñy*)y},

 

причем величина r не является положительно определенной и не может поэтому быть интерпретирована как плотность вероятности. Но, рассматривая уравнение Дирака, мы перешли от r и j к rе и je - величинам, описывающим плотность зарядов и токов. Это означает, что в релятивистских уравнениях нужно отказаться от точного описания одночастичных систем, а считать, что они описывают как-то системы многих частиц. Итак, делаем переходы

 

r ® re = er, j® je = ej

 

Так как e=const, то re и je также удовлетворяют уравнению непрерывности

+ divje = 0,

 

которое теперь выражает закон сохранения электрического заряда. Так как

Е = ±eр , eр ,

 

то в любой релятивистской теории возникают решения с положительными и отрицательными энергиями

 

y+: E = eр , y-: E = -eр.

 

Им отвечают плотности заряда

 

.

 

Рассмотрим нерелятивистский предел этих выражений. Так как y± удовлетворяют уравнению Клейна-Гордона, то для них

 

y ® Ey, -y* ® Ey*

 

(см. самое начало релятивистских рассмотрений). Подстановка дает

 

re± = ey±*y±.

 

Нерелятивистский предел-это r2<< m2c2, или eр»mc2.

1. При Е=eр получаем Е » mc2, и

 

rе+ = еy+*y+.

 

Это есть положительно определенная величина. При нормированной функции y+ интеграл от нее будет равен е, а значит rе можно интерпретировать как плотность заряда одной частицы с q=e. В многочастичной системе rе+ - это плотность зарядов, описываемых функцией y+.

2. При Е = -eр получаем Е » -mc2 , и

 

rе- = -еy-*y-.

 

Это есть плотность зарядов для частиц с q = -е.

Таким образом, в нерелятивистском приближении решения УКГ с положительной и отрицательной энергиями задают плотность вероятности обнаружения частиц и античастиц, соответственно.

Найдем спин частиц, описываемых УКГ. Убедимся, что орбитальный момент для этих частиц сохраняется, т.е. его оператор коммутирует с гамильтонианом. Этот оператор

 

 

в импульсном представлении записывается как

 

,

 

откуда, в частности,

.

 

Записываем уравнение на собственные значения гамильтониана в импульсном представлении:

 

 

и рассматриваем коммутатор на его решениях:

 

 

Аналогично получаем, что

 

y- = 0.

 

Таким образом, оператор орбитального момента сохраняется, и его можно считать полным моментом. Поэтому УКГ описывает частицы с нулевым спином: S=0.

Примечание. Показано только для , но совершенно аналогично доказывается, что тоже коммутируют с . Тем не менее, отсюда строго говоря, не следует, что S=0. Мы доказали только, что коммутирует с , и отсюда следует только то, что и коммутирует с , так как в силу изотропии пространства коммутирует с всегда. Значит, по ходу дела совершено предположение, что =, но оно-то ниоткуда не следует. Тем не менее, все можно обосновать и абсолютно строго. Мы доказали только то, что УКГ может описывать частицы с S=0.

Так или иначе, принимаем, что УКГ описывает частицы с нулевым спином - например, пионы, каоны.

Вернемся вновь к уравнению Дирака и введем в рассмотрение взаимодействие частиц с внешним электромагнитным полем. Оно описывается 4-потенциалом

 

Аm = {А0,А1,А2,А3} = {j,-А},

 

и по общему правилу нужно от обычного 4-импульса перейти к обобщенному 4-импульсу

pm ® pm - Аm,

 

что в трехмерных обозначениях сводится к известным заменам

 

Е ® Е - еj, p® p -А.

 

В операторном виде

® -m,,

и уравнение Дирака превращается в следующее:

 

Aj)y + bmcy.

 

Желаем выяснить, во что переходит это полное уравнение Дирака в нерелятивистском пределе. Нас интересуют стационарные состояния, а потому ищем решения в виде

 

y(r,t) = .

 

Сама функция y-4 - компонентный столбец, а записанные функции j и c - двухкомпонентные столбцы:

 

 

(см. выше). В искомой волновой функции Е+mc2 - полная энергия, а mc2 - энергия покоя, значит Е-«просто» энергия, как раз и имеющая непосредственный релятивистский аналог. Подставляем написанное в полное уравнение Дирака, и получаем

 

(Е - еА0)j = Cs (c

 

(Е + 2mc2 - еА0)c = Cs (j.

 

Пока все точно. Теперь рассматриваем нерелятивистское приближение, в котором êЕ ê<<mc2, причем считаем поле слабым - в том смысле, что êеА0ê<<mc2. Из второго уравнения системы выражаем c через j и делаем указанные приближения:

.

 

Видим, что в нерелятивистском пределе c мала: c » v/c×j. Подставляем эту функцию в первое уравнение системы:

 

(Е-еА0)j = 1/2m [s ( )]2j.

Теперь начинаем преобразовывать с учетом того, что

 

si2 = 1, sisj = ieijk ( i ¹ j).

 

Имеем

[s ()]2 =

 

=

 

=

 

=

 

=

 

= s(s,H)

где H -напряженность магнитного поля. Переход к предпоследней строке осуществляется так:

= -

,

 

но второй член симметричен по индексам i и j, и его свертка с антисимметричным тензором eijk дает нуль. При переходе к последней строке учтено, что в тензорной символике ротор определяется так:

 

(rota)k = eijk

 

После этих выкладок самое верхнее на странице уравнение можно переписать так:

j = Ej.

Это есть что-то вроде стационарного уравнения Шредингера для дираковской частицы со спином S=1/2 (электрона) в электромагнитном поле, причем в нерелятивистском приближении. Оно называется уравнением Паули. Слева стоит полный гамильтониан, содержащий три члена. Первый отвечает кинетической энергии частицы и взаимодействию ее орбитального момента с внешним магнитным полем. Второй член - энергия частицы в электрическом поле. Третий член следует интерпретировать как взаимодействие собственного (спинового) магнитного момента частицы с внешним магнитным полем. Имея в виду, что в электродинамике энергия взаимодействия магнитного момента с магнитным полем есть

 

- (mH) ,

 

как раз и естественно отождествить величину

 

 

с собственным магнитным моментом. Тогда уравнение Паули запишется как

j=Ej.

 

Таким образом, у электрона есть некий врожденный магнитный момент, не зависящий от состояния его движения. Его можно записать как

 

,

где

 

есть магнетон Бора. Вспоминая, что оператор спина , найдем

,

 

а для орбитального движения

.

Отношение магнитного момента к механическому называется гиромагнитным отношением. Видим, что для спинового магнетизма он вдвое больше, чем для орбитального. Выбирая ось z вдоль поля, запишем для магнитной энергии

- (.

Так как Sz = , то вклад в энергию будет таким:

± m0H = ±H.

 

Для электрона, позитрона и мюонов получается значение собственного момента очень хорошо согласующееся с опытом. Правда, отклонение все-таки есть, но оно составляет около 0,1% и полностью объясняется квантовой электродинамикой («аномальный» магнитный момент возникает за счет вакуумных поправок). При обсуждении свойств нуклонов вводится ядерный магнетон

.

 

Если бы протон и нейтрон описывались уравнением Дирака, то получалось бы

mр = mя, mп =0.

 

Эксперимент же дает

 

mр @ 2,79mя, mп @-1,91mя­.

 

Эти расхождения происходят из-за того, что для нуклонов приближение свободных частиц неверно с самого начала: они участвуют в очень интенсивном сильном взаимодействии, которое следует как-то сразу учитывать. Так, из-за этого взаимодействия каждый «голый» нуклон оказывается окруженным пионной «шубой», которая и портит затравочные магнитные моменты. На самом деле это старая точка зрения. Все дело в том, что нуклоны состоят из кварков, у которых тоже есть магнитные моменты. Вот из них-то и складываются магнитные моменты протона и нейтрона, и здесь все получается более или менее хорошо. Для нуклонов можно использовать уравнение Паули, но в него нужно включать экспериментальные значения магнитных моментов (для электрона он получился!).