Магнитное квантовое число – ml определяет значения проекций момента импульса Le на любое выбранное направление Z.

 

Le,z=mlħ . (26)

 

При заданном l, ml принимает значения: 0, ±1, ±2, ±3…±l. В соответствии с этим может иметь только такие ориентации в пространстве, для которых выполняется (26), т.е. Le может иметь 2l+1 ориентацию в атоме.

Таким образом каждому En (кроме Е1) будет соответствовать несколько волновых функций ψn,l,m с разными l и ml. Это означает – атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях – всего их n2.

В 1822 г. было обнаружено, что электрон обладает собственным неуничтожимым механическим моментом импульса, который не связан с орбитальным движением. Этот собственный момент назвали спином. Спин электрона и всех других микрочастиц квантуется.

Спиновое квантовое число s (или ms)собственный моментом импульса электрона:

. (27)

По аналогии с орбитальным моментом проекция спина квантуется так, чтоможет принимать 2s+1 положение в атоме. Впоследствии выяснили, что в атоме может иметь только два положения, т.е. 2s+1 = 2, тогда s, определяющее возможные значения проекции спина на направление Z будет – s = + ½ , а величина проекции

 

Ls,z= ħs (28)

Т.о. всего оказалось четыре квантовых числа, что увеличивает число состояний электрона с одним и тем же значением En до 2n2.

Сравнение показывает, что квантовая механика приводит к тем же результатам и выводам, что и теория Бора. Но в теории Бора эти результаты просто постулировались. В квантовой механике они получены логическим путем из уравнения Шредингера .

Согласно квантовой механике, каждому энергетическому состоянию соответствуют волновые функции, квадрат модуля которых определяет вероятность нахождения электрона в объеме ∆V, а произведение е|ψ|2 среднее значение плотности заряда в этом элементе объема. Т. к. вероятность обнаружения электрона в различных частях атома разная, то и электронная плотность распределяется вокруг ядра атома неравномерно, т. е. электрон как бы размазывается по всему объему атома, образуя электронное облако. Причем, размер и форма электронного облака определяется квантовыми числами n и l, а его ориентацию в пространстве характеризует квантовое число – ml. На рис. 6 представлена фотомодель электронного облака. Из рисунка видно, насколько условно понятие «орбита» применительно к движению электрона в атоме.