рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КОРПУСА ПЛАВКИХ ВСТАВОК

КОРПУСА ПЛАВКИХ ВСТАВОК - раздел Энергетика, ЭЛЕКТРИЧЕСКАЯ ДУГА   Корпус Плавких Вставок Предохранителей Изготавливают Из Высок...

 

Корпус плавких вставок предохранителей изготавливают из высокопрочных сортов специальной керамики (фарфор, стеатит или корундомуллитовая керамика) для обеспечения их высокой разрывной способности. Некоторые зарубежные фирмы (США, Япония) корпуса для предохранителей выполняют из стеклоткани, пропитанной кремнийорганической смолой. Анализ механических стволов литьевых смол подтверждает, что они могут быть использованы для изготовления корпусов предохранителей. Прочность на растяжение изготовленных таким образом корпусов выше прочности аналогичного по размеру корпуса из керамики со стальными крышами. Основным фактором, препятствующим применению смол, является их старение при повышенных температурах. При температуре корпуса, не превышающей 300С, не обнаруживается старения, но при более высокой температуре механические и электрические свойства смол со временем ухудшаются. В связи с тем, что возможны значительные перегревы корпуса предохранителя как в номинальном режиме (до 1200С), так и в области токовых перегрузок, применение изоляционных смол для изготовления корпусов и других элементов конструкции предохранителей станет возможным только после создания литьевых смол с достаточно большой термической стойкостью в различных режимах работы предохранителей.

Фирма «Фриц Дришер» (ФРГ) изготовила предохранители с шарообразным корпусом из эпоксидной смолы, что значительно упростило массовое производство предохранителей. Для повышения механической прочности в эпоксидную смолу добавляют волокнистый материал. В таком предохранителе отсутствуют резьбовые соединения. Эти предохранители влагонепроницаемы. Но такие предохранители предназначены только для отключения больших токов короткого замыкания, поскольку при малых токовых перегрузках возникают недопустимые перегревы корпуса из смолы.

Для корпусов предохранителей с малыми номинальными токами обычно используются специальные стекла.

 

КОНСТРУКЦИЯ ПЛАВКИХ ЭЛЕМЕНТОВ.

 

Все разновидности плавких элементов можно разделить на две группы: постоянного по длине плавкого элемента поперечного сечения и переменного. Плавкие элементы постоянного сечения обычно изготавливают из проволоки, а плавкие элементы переменного сечения – из металлической фольги или тонкой металлической пленки.

Отношение поперечного сечения широкой части плавкого элемента к поперечному сечению узкого перешейка определяет вид защитной характеристики. Например, для быстродействующих предохранителей обычно используются плавкие элементы с отношением более пяти. Характеристики для инерционных и нормально действующих предохранителей получаются при отношении менее пяти.

 

Плавкие элементы постоянного сечения обычно имеют плотность тока намного меньше, чем в плавких элементах переменного сечения. При срабатывании предохранители с плавкими элементами постоянного сечения имеют большие значения тока плавления и интеграла плавления, большие перенапряжения, но длительность горения дуги и отношения максимального значения пропускаемого тока к току плавления в этих предохранителях существенно меньше.

С повышением номинального напряжения предохранителя в плавких элементах переменного сечения увеличивается число последовательно соединенных узких перешейков, что необходимо для того, чтобы при срабатывании предохранителей на каждом перешейке загоралась отдельная дуга. В результате увеличения числа последовательно горящих дуг происходит более быстрое нарастание напряжения на предохранителе, чем в тех случаях, когда плавкий элемент имеет только один узкий перешеек.

Создание нескольких относительно узких параллельных каналов горения электрической дуги улучшает условия ее гашения за счет использования большего количества материалов наполнителя и уменьшения тока в каждой из параллельных дуг, поэтому при конструировании плавкие элементы предпочитают делить на ряд параллельных ветвей. Число параллельных ветвей ограничивается технологическими трудностями изготовления узких перешейков малых размеров.

Температура плавких элементов в различных режимах работы предохранителей изменяется в значительных пределах. Вследствие этого происходит большее или меньшее удлинение плавкого элемента. Некоторый разброс размеров корпусов плавких вставок приводит также к разбросу длин плавких элементов от предохранителя к предохранителю, поэтому в плавких элементах предусматривают по длине несколько изгибов, компенсирующих разницу в длинах корпуса и плавкого элемента в результате воздействия различных факторов.

Качество предохранителей в значительной степени зависит от значений переходных электрических сопротивлений. Как показали исследования, при плохом контактном соединении плавкого элемента с контактами плавкой вставки переходное сопротивление может достигать 50% электрического сопротивления плавкого элемента. Из-за этого предохранители перегреваются в номинальном режиме работы, сокращается их срок службы. Кроме того, при плохом контактном соединении нарушается воспроизводимость результатов испытаний от одного образца к другому. Все плавкие элементы предохранителей с большими номинальными токами присоединяются к контактным выводам сваркой, обеспечивающей хорошее качество контактного соединения. Для предохранителей с малыми номинальными токами используется иногда пайка мягкими припоями, но чаще механическое обжатие. В разборных предохранителях плавкий элемент соединяется с выводами плавкой вставки болтовым зажимом.

 

КОНСТРУКЦИЯ УКАЗАТЕЛЕЙ СРАБАТЫВАНИЯ ПЛАВКИХ ВСТАВОК

 

Плавкие элементы современных предохранителей находятся внутри непрозрачного корпуса, и состояние плавкого элемента визуально определить невозможно. Особенно важно иметь представление о состоянии плавкого элемента для предохранителей с большими номинальными токами из-за значительных трудностей, связанных с установкой и снятием предохранителя. В связи с этим применяются различного типа указатели, которые показывают, перегорел ли плавкий элемент предохранителя.

Имеется большое количество патентов на конструкции указателей. Наиболее широкое применение получил указатель срабатывания, использующий тот же принцип, что и основной плавкий элемент, - расплавление под действием сверхтока. Для создания такого указателя тонкая металлическая проволока с достаточной механической прочностью на растяжение электрически присоединяется параллельно основному плавкому элементу. При протекании через предохранитель сверхтока перегорают основной плавкий элемент и проволочка указателя. Проволочка указателя срабатывания закрепляется с одной стороны наглухо, а с другой подсоединяется к штифту, который подтягивается с помощью пружины в специальное отверстие. Проволочка указателя срабатывания находится в кварцевом песке. Ее длина обычно приблизительно равна длине плавкого элемента, что необходимо для надежного гашения дуги при номинальном напряжении предохранителя.

Указатели срабатывания такого типа изготавливаются двух видов: автономные – в виде небольшой плавкой вставки с высокоомным плавким элементом и наполнителем, устанавливаемые в собственном корпусе вне плавкой вставки и встроенные в корпус плавкой вставки. Автономные указатели срабатывания иногда крепятся непосредственно на плавкой вставке, а иногда устанавливаются совсем в стороне от предохранителя, имея с ним только электрическую связь. Последнее характерно для предохранителей фирмы «Инглиш электрик» (Великобритания).

После перегорания проволочки указателя срабатывания освобождается пружина, которая выталкивает штифт, окрашенный в яркий цвет и являющийся визуальным указателем того, что предохранитель перегорел. Иногда штифт служит и бойком, воздействующим на вспомогательные контакты предохранителя. В результате этого сигнал о срабатывании предохранителя передается на соответствующие органы управления.

В зависимости от соотношения электрических сопротивлений и теплофизических параметров основного плавкого элемента и указателя при срабатывании предохранителя могут наблюдаться три различных случая:

1) первоначальное расплавление основного плавкого элемента, горение дуги на нем. Активное сопротивление указателя шунтирует дугу основного плавкого элемента, способствуя снижению скорости нарастания напряжения на промежутке и снижению пика напряжения;

2) первоначальное расплавление проволоки указателя, а затем расплавление основного плавкого элемента. В связи с тем, что основной плавкий элемент имеет малое активное сопротивление, он будет шунтировать промежуток, образовавшийся после расплавления проволоки указателя, и препятствовать сколько-нибудь длительному горению дуги в указателе;

3) почти одновременное расплавление основного плавкого элемента и проволоки указателя срабатывания. Горение дуги на указателе может происходить до конца горения дуги на основном плавком элементе в одних случаях, а в других – горение дуги на указателе прекратится намного раньше, чем в основном плавком элементе

К сожалению, указатели рассматриваемого типа обладают нестабильностью срабатывания. При малых напряжениях и при малых токовых перегрузках проволока перегорает на небольшом участке. Если этот участок находится на большом расстоянии от пружины и если плотность упаковки песчаного наполнителя в корпусе указателя большая, силы трения проволоки о песчаный наполнитель могут превысить силу упругости пружины и указатель срабатывания может не сработать. Недостатком этих указателей является также то, что при случайном механическом обрыве плавкого элемента в процессе сборки или по какой-либо другой причине указатель срабатывания не показывает действительное состояние предохранителя без включения напряжения.

В качестве визуальных указателей срабатывания используют также газоразрядные лампы и светодиоды, включенные параллельно плавкой вставке. Но стоимость таких указателей срабатывания выше, а надежность их в работе ниже, чем у описанных выше указателей срабатывания.

 

 

ЗАКРЫТЫЕ ПРЕДОХРАНИТЕЛИ

 

Закрытые предохранители обычно выполняются в виде фибровой трубки, закрытой с концов латунными колпаками. Внутри трубки плавкие вставки. Образующаяся при сгорании вставки электрическая дуга горит в закрытом объеме. При горении дуги стенки выделяют газ, давление в трубке повышается, дуга гаснет.

Закрытые предохранители серии ПР-2 (разборные) имеют номинальные токи от 100А до 1000 А, предельные отключаемые токи при напряжении 380В и cosj³0.4 составляют от 6 кА до 20 кА. Вставки в основном с перешейками.

9-12

ПРЕДОХРАНИТЕЛИ С НАПОЛНИТЕЛЕМ (ЗАСЫПНЫЕ)

Плавкие вставки размещаются в среде мелкозернистого твердого наполнителя (например: мел, кварцевый песок), помещающегося в фарфоровом или пластмассовом корпусе. Возникающая при плавлении вставок электрическая дуга тесно соприкасается с мелкими зернами наполнителя, интенсивно охлаждается, деионизируется и поэтому быстро гасится.

Засыпные предохранители серии ПН-2 имеют номинальные токи от 100 А до 600 А, предельный отключающий ток при напряжении 500 В () находится в пределах от 25 кА до 50 кА. Серии ПП31 на номинальные токи от 63 А до 1000 А, предельный ток отключения до 100 кА при напряжении 660 В.

В таких предохранителях применяют параллельные вставки, что позволяет при том же суммарном поперечном сечении вставок получить большую поверхность охлаждения.

9-13

ИНЕРЦИОННЫE ПРЕДОХРАНИТЕЛИ

Характеристика на участке б-в обеспечивается нормальной вставкой увеличенного сечения, а на участке а-б другим элементом.

Серия ИП на напряжение 30 В и токи от 5 А до 250 А.

ЖИДКОМЕТАЛЛИЧЕСКИЕ – ток до 250 кА при напряжении 450 В переменного тока. Предохранители работают многократно с большим токоограничением. (Устройство рассмотрите самостоятельно; Чунихин, стр. 514-515).

БЫСТРОДЕЙСТВУЮЩИЕ ДЛЯ ЗАЩИТЫ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ. ПП-57 на номинальные токи (40-800) А, ПП-59 на номинальные токи (250-2000) А. Номинальные напряжения составляют до 1250 В переменного и 1050 В постоянного тока.

БЛОК ПРЕДОХРАНИТЕЛЬ-ВЫКЛЮЧАТЕЛЬ. БПВ номинальный ток до 350 А при переменном напряжении до 550 В.

9-14

ВЫБОР ПРЕДОХРАНИТЕЛЕЙ

 

Предохранители выбирают

1. по условию пуска и длительной эксплуатации;

2. по условию селективности.

 

1 В процессе длительной эксплуатации температура нагрева предохранителя не должна превосходить допустимых значений. В этом случае обеспечивается стабильность времятоковых характеристик предохранителя. Для выполнения этого требования необходимо, чтобы патрон и плавкая вставка выбирались на номинальный ток, равный или несколько больший номинального тока защищаемой установки.

Предохранитель не должен отключать установку при перегрузках, которые являются эксплуатационными (так, пусковой ток асинхронного двигателя с короткозамкнутым ротором может достигать семикратного значения номинального тока. По мере разгона пусковой ток падает до значения, равного номинальному току двигателя. Длительность пуска зависит от характера нагрузки).

9-15

 

Для двигателей с легкими условиями пуска (двигатели насосов, вентиляторов, станков)

,

т.е. номинальный ток вставки выбирается по пусковому току нагрузки.

Для тяжелых условий пуска, когда двигатель медленно разворачивается (привод центрифуги, краны, дробилки), или в повторно-кратковременном режиме, когда пуски проходят с большой частотой, вставки выбирают с еще большим запасом

 
 

Если предохранитель стоит в линии, питающей несколько двигателей, плавкая вставка выбирается по формуле:

где – расчетный номинальный ток линии, равный .

Разность берется для двигателя, у которого она наибольшая.

 

 

9-16

Для сварочных трансформаторов условия выбора предохранителя следующие:

,

где ПВ – продолжительность включения.

 

 

2 Выбор предохранителей по условию селективности.

Между источником энергии и потребителем обычно устанавливается несколько предохранителей, которые должны отключать поврежденные участки по возможности селективно.

Предохранитель , пропускающий больший номинальный ток, имеет вставку большего сечения, чем предохранитель , установленный у одного из потребителей.

9-17

При КЗ необходимо, чтобы повреждение отключалось предохранителем, расположенным у места повреждения. Все остальные предохранители, расположенные ближе к источнику, должны остаться работоспособными. Такая согласованность работы предохранителей называется избирательностью или селективностью.

Для обеспечения селективности полное время работы () предохранителя должно быть меньше времени нагрева предохранителя до температуры плавления его вставки, т.е.

tпл1³tр2.

Для обеспечения селективности наименьшее фактическое время срабатывания предохранителя (на больший ток) должно быть больше наибольшего времени срабатывания предохранителя (на меньший номинальный ток):

,

где и - время срабатывания предохранителя на больший и меньший номинальные токи, соответствующие номинальной характеристике.

Время срабатывания предохранителя из-за производственных допусков может отклоняться от номинального на . Тогда приведенное неравенство можно записать в виде

.

9-18

Множители 0,5 и 1,5 учитывают, что предохранитель взят с отрицательным допуском по времени срабатывания, а предохранитель - с положительным. В результате получим необходимое условие селективности:

,

т.е. для селективной работы время срабатывания предохранителя на больший ток должно быть в 3 раза больше, чем у предохранителя на меньший ток.

Для однотипных предохранителей для проверки селективности достаточно проверить при наибольшем токе вставку с меньшим номинальным током.

Для разнотипных предохранителей проверка селективности производится по всему диапазону токов: от 3х фазного КЗ в конце защищаемого участка до номин ального тока плавкой вставки.

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРИЧЕСКАЯ ДУГА

ЭЛЕМЕНТЫ КОНСТРУКЦИИ ПРЕДОХРАНИТЕЛЕЙ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КОРПУСА ПЛАВКИХ ВСТАВОК

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭЛЕКТРИЧЕСКАЯ ДУГА
  При размыкании электрических цепей с помощью контактов электрических аппаратов (выключателей, автоматов, рубильников, контакторов) обычно на этих контактах возникает дуговой разряд

УСЛОВИЯ ГОРЕНИЯ И ГАШЕНИЯ ДУГИ ПОСТОЯННОГО ТОКА
  Чтобы погасить дугу постоянного тока, необходимо создать такие условия, при которых в дуговом промежутке при всех значениях тока от начального до нулевого процессы деионизации прево

ГОРЕНИЕ И ГАШЕНИЕ ДУГИ ПЕРЕМЕННОГО ТОКА
  Дуга переменного тока обычно гасится легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения

ПЛАВКИЕ ЭЛЕМЕНТЫ
  Наиболее подходящим материалом для плавкого элемента является серебро. Это обусловлено тем, что серебро имеет высокую и стабильную электрическую проводимость. Серебряные плавкие эле

ДУГОГАСЯЩИЕ СРЕДЫ
  Гашение дуги при срабатывании предохранителей в различных дугогасящих средах.   В настоящее время созданы дуговые предохранители, у которых гашение дуги проис

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги