Вторичные энергетические ресурсы (ВЭР)

 

 

Утилизация отходов цивилизации, существенную помощь в которой может оказать биоэнергетика, является сама по себе общечеловеческой проблемой, связанной с охраной природы. Особым типом отбросов человеческой жизнедеятельности являются энергетические отходы, именуемые вторичными энергетическими ресурсами, причем наибольшее их количество возникает в сфере промышленного производства.

Понятие «энергетические отходы производства» включает все потери в энергоиспользующих агрегатах, а также энергетический потенциал готовой продукции. Практически это означает, что всяэнергия, подведенная к технологической энергоиспользующей установке, плюс внутренние выделения энергии, в конечном счете, идут в отходы (исключается лишь теплота эндотермических, теплопоглощающих процессов, а также скрытая теплота фазовых переходов — испарение-конденсация, плавление-затвердевание и т.п.). Однако не все эти отходы можно рассматривать как вторичные энергетические ресурсы (ВЭР).

Под вторичными энергетическими ресурсамипонимается энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся в технологических агрегатах (установках), который не используется в самом агрегате, но может быть частично или полностью использован для энергоснабжения других потребителей.

Эти энергетические отходы можно разделить на два рода:

первый род— недоиспользованный энергетический потенциал первичного энергоресурса — продукты неполного сгорания топлива, тепло дымовых газов, «мятый» пар из пароприводов, тепло конденсата, сбросных вод и т.п.;

второй род— проявления физико-химических свойств материалов в ходе их обработки — горючие газы доменных, фосфорных и других печей, тепло готовой продукции, теплота экзотермических реакций, избыточное давление жидкостей и газов, возникающее по условию протекания технологического процесса и т.п.

ВЭР первого рода следует стремиться устранить или снизить их выход, и только тогда, когда все подобные меры приняты, использовать.

ВЭР второго рода — побочный результат технологии, поэтому необходимо либо создать на их базе комбинированный энерготехнологический агрегат с выработкой одновременно энергетической и неэнергетической продукции, либо утилизировать иным путем при помощи специального утилизационного оборудования.

По видам содержащегося энергетического потенциала ВЭР подразделяются на горючие, тепловые и избыточного давления, причем каждый из этих видов ВЭР может быть первого или второго рода.

Горючие ВЭР — это химическая энергия отходов производства, которые не используются или непригодны для дальнейшей технологической переработки, но применимы в качестве топлива: доменный, конвертерный, ферросплавной газы, отходящий газ производства технического углерода, горючие кубовые остатки химических и нефтехимических производств, щелок целлюлозно-бумажного производства, отходы топливопереработки, переработки древесины и др. Их энергетический потенциал определяется теплотой сгорания.

Тепловые ВЭР — это тепло основной и побочной продукции: тепло рабочих тел из систем принудительного охлаждения технологических агрегатов и установок, тепло отходящих газов, пара и горячей воды, отработавших в технологических и силовых установках и т.п. Энергетический потенциал определяется теплосодержанием теплоносителей.

ВЭР избыточного давления — это потенциальная энергия газов и жидкостей, покидающих технологические агрегаты с избыточным давлением, которое необходимо снижать перед последующей ступенью использования или при выбросе в окружающую среду. Энергетический потенциал определяется давлением для энергоносителей-жидкостей, давлением и температурой, определяющих возможную работу газов и паров при расширении.

Для количественной оценки вторичных энергоресурсов обычно рассматривается несколько показателей:

выход — количество ВЭР, образующихся в процессе производства в данном технологическом агрегате за единицу времени;

выработка энергии за счет ВЭР — количество тепла, холода, механической работы или электроэнергии, получаемое в утилизационных установках. При этом различаются:

возможная выработка — максимальное количество тепла, холода, механической работы или электроэнергии, которое может быть практически получено за счет данного вида ВЭР с учетом режимов работы агрегата — источника ВЭР и КПД утилизационной установки;

экономически целесообразная выработка — максимальное количество тепла, холода, механической работы или электроэнергии, целесообразность получения которого в утилизационной установке подтверждается экономическими расчетами с учетом энергоэкономического эффекта у потребителя;

фактическая выработка — фактически полученное количество тепла, холода, механической работы или электроэнергии на действующих утилизационных установках.

ВЭР представляют собой огромный резерв повышения экономичности топливно-энергетического комплекса. По некоторым экспертным оценкам, их вовлечение в топливно-энергетический баланс страны в 10 раз дешевле, чем увеличение добычи природных энергоресурсов. Рациональное использование ВЭР как реализация важной части государственной энергосберегающей политики возможно при выборе оптимального направления их использования, которыми являются:

топливное — непосредственное использование горючих ВЭР в качестве топлива;

тепловое — использование тепла, получаемого непосредственно в качестве тепловых ВЭР или вырабатываемого за счет горючих ВЭР в утилизационных установках. К этому направлению относится также выработка холода за счет ВЭР в абсорбционных холодильных установках;

силовое (механическое) — использование механической энергии избыточного давления, механической энергии, получаемой в силовых установках за счет тепловых или горючих ВЭР;

комбинированное — получение тепловой и электрической энергии на утилизационных ТЭЦ (УТЭЦ) за счет горючих или тепловых ВЭР.

Производство и использование вторичных энергетических ресурсов в национальном хозяйстве является одним из важнейших и, пожалуй, самым эффективным направлением энергосбережения.

 

 

11.4. Организация работы по экономии энергоресурсов в промышленности

 

Добыча и использование запасов энергетических ресурсов в мире и в нашей стране теснейшим образом связаны с расходованием их потребителями, поскольку, как уже указывалось, одной из главных специфических черт энергетики и всего топливно-энергетического комплекса является полная зависимость объемов (иногда и времени) производства от масштабов потребления.

Уровень потребления энергетических ресурсов служит своеобразным показателем уровня экономического и социального развития страны, региона, народа. Поэтому характеристика масштабов энергопотребления важна не только с узкоотраслевых позиций, но и как оценка состояния всей экономики.

В России разработана Концепция энергетической политики страны в новых экономических условиях. Энергопотребление и производство энергии в нашей стране характеризуется показателями, приведенными в табл. 11.3.

В настоящее время в связи с кризисными явлениями в экономике трудно прогнозировать уровни энергопотребления в России. Однако общая тенденция к его увеличению остается неизменной, неясны лишь темпы роста общих энергетических нагрузок и годового потребления, которые, если судить по общемировому стремлению к сдерживанию энергозатрат, по-видимому, станут более низкими, чем в прежние годы.

Таблица 11.3.

Развитие энергетики России в 1990—1996 г.

    1990 г.   1992 г.   1993 г   1995 г.   1996 г.  
Потребление:          
первичные энергоресурсы, млн.т
электроэнергия, млрд. кВт-ч            
                       
Производство первичных энергоресурсов, млн. т          
В том числе:                      
нефть и конденсат, млн. т            
природный и попутный газ, млрд. м3            
уголь, млн. т            
                       
Вывоз энергоресурсов, млн.т                      
В том числе:                      
в страны СНГ, млн. т*:       200—205   210—215   215—230  
нефть и нефтепродукты, млн. т     82—84   60—63   57—60   55—60  
природный газ, млрд. м3       87—90   93—98   100—105  
в другие страны*:       240—245   215—251   205—225  
нефть и нефтепродукты, млн. т       65-69   45—50   40—50  
газ, млрд. м3 104—106 112—113 115—120 115—120

 

Наиболее эффективно энергосбережение на предприятиях при комплексном решении технических, технико-экономических и организационных вопросов, относящихся ко всей энергетике предприятия — к системам энергоснабжения и энергоиспользования — и к управлению энергетическим хозяйством. Технико-экономические и организационные проблемы заключены в совершенствовании выполнения функций управления.

Основные технические проблемы промышленной энергетики и пути их решения на предприятиях заключены в следующих направлениях:

1. Замена оборудования (техническое перевооружение), видов энергии, энергоносителей, обрабатываемых материалов наиболее выгодными, имеющими лучшие технические, энергетические и технико-экономические показатели.

2. Модернизация промышленного оборудования, особенно технологических аппаратов, с повышением полезного использования энергии в них и сокращением потерь, прежде всего энергетических.

3. Интенсификация производственных процессов с повышением загрузки технологического оборудования и соответственно снижением удельных энергозатрат на единицу продукции, полупродукта, сырья, обрабатываемого материала на работу или операцию.

4. Введение дополнительных устройств — дооборудование технологических энергоиспользующих установок и процессов при улучшенном оснащении, установке дополнительного, в том числе вспомогательного оборудования, приборов и автоматики для оптимизации производства и сокращения удельных энергозатрат.

5. Изменение рабочих параметров оборудования и энергии с целью улучшения технико-экономических показателей производственных процессов.

6. Улучшение использования энергии внутри технологических энергоиспользующих установок, сокращение прямых потерь и соответственное повышение КПИ.

7. Улучшение использования вторичных энергетических ресурсов.

8. Повышение надежности энергоснабжения и работы энергооборудования с целью предотвращения аварийных остановов и простоев, связанных с материальными и энергетическими потерями.

Эти направления относятся к конкретным элементам энергетики промышленного предприятия в системах энергоснабжения и энергоиспользования, где в энергетическое хозяйство предприятия входит все энергоснабжение и частично энергоиспользование — энергоприемники технологических установок, обслуживаемые энергетиками.

Вся область проведения энергоберегающих мероприятий, классифицированная по направлениям и элементам заводской энергетики, показана в табл. 11.4, где каждая клетка со знаком «+» означает группу мероприятий. Например, «Модернизация заводских источников энергии» или «Повышение надежности энергоприемников» и т.д. Если сочетание направления и элемента не имеет смысла (например, «Дополнительные устройства ... обрабатываемого материала»), в клетке стоит знак «—».

 

 

Таблица 11.4.

Основные направления энергосбережения на промышленном предприятии (по элементам заводской энергетики)

Элементы энергетики промышленного предприятия Замена Модернизация Интенсификация Дополнительные устройства Изменение Улучшение использования энергии в агрегате Повторение
внутри вне
1. Заводские источники энергии + + + + + + + +
2. Заводские преобразователи энергии + + + + - + - +
3. Заводские энергетические коммуникации (сети) + + + - + + - +
4. Первичная энергия + - + - + + + +
5. Энергоприемник технологической установки + + + + - + - +
6. Передача энергии из энергоприемника в аппарат + + + + + + - +
7. Технологический аппарат + + + + + + + +
8. Обрабатываемый материал + - - - + + + -

 

Таблица-матрица (табл. 11.4) представляет собой трафарет, с помощью которого может быть намечен достаточно полный перечень энергосберегающих мероприятий, исходя из технического состояния и сегодняшних характеристик экономичности, по каждой единице энергооборудования, в каждом элементе промышленной энергетики на данном предприятии.

Технико-экономические расчеты, которые могут проводиться по методическим положениям, приведенным ниже, позволят определить экономический эффект каждого мероприятия. По величине этого эффекта, а также по различным экономико-технологическим соображениям (наличия средств, оборудования, возможности остановки производства и др.) следует ранжировать намеченные мероприятия по очередности и срокам их выполнения, т.е. составить перспективный план энергосбережения.

Наиболее эффективна замена старого оборудования на новое, прогрессивное и экономичное, т.е. техническое перевооружение, затрагивающее основное производство и энергетику предприятия и требующее солидных инвестиций. Другие направления энергосбережения, хотя в большинстве случаев менее эффективны, но и менее капиталоемкие, и могут реализоваться собственными силами.

Экономическая сущность технического перевооружения — компенсация физического и морального износа оборудования. Замена изношенного оборудования не требует обоснования, поскольку оно снижает надежность работы, требует повышенных затрат на ремонтное обслуживание и имеет низкие эксплуатационные характеристики. Оценка морального износа значительно сложнее, и замена оборудования по этому показателю требует экономического обоснования. Замене могут подлежать также:

- виды энергии при выборе наиболее рационального энергоносителя для производственных процессов;

- способ передачи энергии из энергоприемника в технологический аппарат (например, замена редуктора, регулирующего число оборотов, на современный электропривод);

- вид и качество материала с целью снижения энергозатрат на его обработку (например, повышение концентрации растворов, дробление или агломерирование материалов, применение пластмасс вместо металлов и др.).

Модернизация энергетического и технологического оборудования также компенсирует моральный износ, ее эффективность иногда выше, чем перевооружения, за счет существенно меньших капитальных затрат и при осуществлении своими силами. Эффективность ее проведения можно оценить, используя такой критерий, как суммарные дисконтированные затраты:

, (руб/год).

Расчеты проводятся для вариантов работы на базовом и модернизированном оборудовании:

,

где bбт и bмт — удельные расходы энергоресурсов (в условном топливе) соответственно на базовом и модернизированном оборудовании, тут./ед. продукции; Пt – годовая производительность, ед.прод/год; Цт – цена энергоресурса, руб./тут.; и —эксплуатационные расходы (кроме энергетических затрат) при работе на базовом и модернизированном оборудовании, руб/год; Еср – норматив дисконтирования; Кмt – капитальные затраты на модернизацию, руб; Тр – время расчетного периода, лет.

Интенсификация производственных процессов должна выражаться в увеличении производительности установок без существенных изменений конструкции за счет либо ускорения технологических и других производственных процессов, либо их лучшей организации, либо при использовании прогрессивных материалов. Как правило, интенсификация процессов должна вести к повышенному, ускоренному физическому износу оборудования, что оправдано, если уравниваются сроки физического и морального износа, но может привести к быстрому выходу оборудования из строя, если интенсификация не сопровождается усиленной профилактикой и повышенным ремонтным обслуживанием. При интенсификации производственных процессов снижается себестоимость выпускаемой продукции за счет уменьшения условно-постоянных расходов. Эффективность интенсификации может быть оценена по критерию чистого дисконтированного дохода, определяемого, соответственно, для базового и интенсифицированного режимов работы оборудования:

,

где Рб.t и Pи.t – поток платежей, соответственно, при базовом и интенсифицированом режимах работы оборудования, руб/год; Sб и Sи – себестоимость продукции в базовом и интенсифицированном режимах работы оборудования, руб/ед.продукции; Пб.t и Пи.t – годовая производительность до и после интенсификации, ед.продукции/год; Нt – налог на прибыль; Иам.t –амортизационные отчисления, руб/год.

При расчетах амортизационных отчислений необходимо учесть изменение нормы амортизации после интенсификации:

Иам.t = НаКб + НиКи (руб/год),

где На и Ни — нормы амортизации в базовом и интенсифицированном режимах работы оборудования; Кб — балансовая стоимость оборудования, руб; Ки — капитальные затраты на интенсификацию режима, руб.

Если выделить энергетическую составляющую в себестоимости промышленной продукции, то эта формула примет вид:

где b(б) и b(и) — удельные расходы энергоресурсов (в условном топливе) в базовом и интенсифицированном режимах работы, т у.т./ед. продукции; S(пост)б и S(пост)и — условно-постоянная составляющая себестоимости без энергетической части в базовом и интенсифицированном режимах работы, руб/ед.продукции.

Введение дополнительных устройств для повышения производительности или улучшения режимов связано с совершенствованием производственных процессов при таких вариантах его реализации:

1) установка дополнительного оборудования (основного или вспомогательного) для упорядочения производственного процесса, «расшивка узких мест», лимитировавших общую производительности участка, цеха, предприятия;

2) установка дополнительного энергетического оборудования и устройств для улучшения энергообеспечения потребителей, в том числе для повышения качества (надежности) энергоснабжения — местная, локальная реконструкция энергохозяйства;

3) установка устройств, управляющих процессами основного и энергетического производства, в том числе при выработке, передаче и потреблении энергоресурсов, оптимизирующих их и сокращающих потери и затраты энергии — автоматизация процессов, улучшение приборного учета, введение устройств местного или централизованного контроля и регулирования и т.п.

В первом и втором вариантах энергоэкономическая оценка может производиться так же, как при модернизации оборудования, в третьем случае – как для интенсификации производственных процессов.

Изменение параметров оборудования и энергии должно привести к интенсификации производства, и экономическая оценка проводится по тем же показателям. Для основного технологического оборудования это возможно как по интенсивности (увеличение загрузки, заполнение аппаратов, повышение скорости процессов), так и по экстенсивности — для периодических процессов (увеличение времени работы, снижение простоев, в том числе под загрузкой и выгрузкой, сокращение холостых ходов и т.п.). Изменение параметров в энергетике предприятия связано либо с увеличением загрузки энергооборудования, например двигателей, либо с повышением параметров энергии, в частности, давно предлагаемый перевод внутризаводского электроснабжения на напряжение 660 В, либо с изменением схем преобразования энергии – тиристорные преобразователи частоты тока взамен мотор-генераторов [10]. В ряде случаев для производственных процессов выгодно изменять вид энергии, тогда оценка может проводиться как при модернизации оборудования, так и при выборе наиболее рациональных энергоносителей.

Повышение полезного использования энергии в технологических установках достигается и при техническом перевооружении, и при модернизации, и при интенсификации процессов. Однако возможно улучшение внутриагрегатного использования энергии на действующем оборудовании при осуществлении сравнительно простых мер. Примером может служить нормализация энергозатрат по результатам энергоэкономического анализа с сокращением эксплуатационных и режимных потерь и соответствующим повышением КПД и КПИ. Это достигается почти исключительно организационными мерами, при жестком соблюдении технологической и энергетической дисциплины, редко требует капитальных затрат. Такие затраты могут понадобиться на следующей ступени энергоэкономического совершенствования — при рационализации энергоиспользования. Экономический эффект подобных мероприятий может быть подсчитан как разность суммарных дисконтированных затрат по формуле:

, (руб/год),

где Цэ – цена (тариф) энергии, руб/т у.т., руб/кВт-ч, руб/Гкал; b(до) и b(по) – удельные расходы энергии до и после нормализации (или рационализации) энергоиспользования, т у .т., кВт-ч, Гкал на ед.прод.; Пt – объем производства, ед.прод./год; Ирег.t — возможные дополнительные годовые издержки по оптимальному регулированию процесса, руб/год; Кн.t — возможные единовременные (капитальные) затраты на мероприятие, руб.

Если в результате рационализации энергоиспользования объем производства продукции увеличивается (есть возможность ее сбыта), то для расчета экономического эффекта не подходит критерий суммарных дисконтированных затрат. В этом случае расчет должен проводится с использованием критерия чистого дисконтированного дохода.

Меры по рационализации энергоиспользования в технологии разнообразны и возможны на любом оборудовании, в любом процессе. Однако необходимо учитывать технологические требования в сочетании с энергетическими, поэтому такие мероприятия разрабатываются и осуществляются в тесном сотрудничестве технологов и энергетиков при обязательной технико-экономической оценке технологических, энергетических и других последствий.

Использование вторичных энергетических ресурсов практически не изменяет общий расход энергии в агрегате-источнике ВЭР, а экономия энергии достигается в замещаемых энергетических установках. Поэтому экономический эффект использования ВЭР рассчитывается как разность суммарных дисконтированных затрат – при использовании ВЭР и в замещаемой энергогенерирующей установке. Вторичные энергоресурсы могут использоваться по четырем направлениям: топливному, тепловому, механическому (силовому) и комбинированному (для использования на утилизационных ТЭЦ – УТЭЦ). Независимо от этих направлений (рис. 11.2) экономический эффект утилизации ВЭР рассчитывается исходя из экономии топлива за счет ВЭР:

, (руб/год),

где ВВЭР — экономия топлива за счет ВЭР, т у.т./год; Цт — цена замещаемого топлива, руб./т у.т.; Изам, ИВЭР — эксплуатационные издержки при эксплуатации замещаемой энергоустановки без стоимости расходуемого топлива и при утилизации ВЭР, руб./год; КВЭР, Кзам — капитальные затраты (основные фонды) замещаемого энергоисточника и установки (при ненадежной работе утилизатора необходимо предусматривать резервные, дублирующие мощности).

Повышение надежности энергоснабжения и работы энергооборудования должно предотвратить экономический ущерб от аварийных остановов производства, особенно непрерывного (в химии, нефтехимии, металлургии и пр.), сопровождающихся также значительными энергетическими потерями из-за:

— продукции, пошедшей в брак, на изготовление которой уже затрачена энергия;

— порчи оборудования, на ремонт которого должны быть затрачены материалы, труд и энергия;

— прямых потерь энергоносителей, например, при аварийном сливе конденсата;

—энергозатрат на пуск оборудования после аварийного простоя, причем при этих пусках какое-то, иногда довольно продолжительное время, идет работа на холостом ходу и др.

 

Виды вторичных энергетических ресурсов