Связь энергетики с отраслями промышленности, коммунально-бытовым сектором, уровнем благосостояния

Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

· получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;

· передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;

· преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;

· передача вторичной энергии потребителям, например по линиям электропередачи[1].

Электроэнергетика

Доля выработки электроэнергии в России: красный — ТЭС(68 %), синий — ГЭС(16 %), зелёный —АЭС(16 %).

Основная статья: Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить натрадиционную и нетрадиционную.

[править]Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[2] электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[3].

[править]Тепловая энергетика

Основная статья: Теплоэнергетика

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:

· Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;

· Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;

· Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки[4].

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39 % всей электроэнергии мира, на базе угля — 27 %, газа — 24 %, то есть всего 90 % от общей выработки всех электростанций мира[5]. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Крупная канадская ГЭС «Сэр Адам Бек» на Ниагарском водопаде.

[править]Гидроэнергетика

В этой отрасли электроэнергия производится на Гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

[править]Ядерная энергетика

Балаковская АЭС ночью.

Основная статья: Ядерная энергетика

Отрасль, в которой электроэнергия производится на Атомных электростанциях (АЭС), использующих для этого энергию цепной ядерной реакции, чаще всегоурана.

По доле АЭС в выработке электроэнергии первенствует Франция[6], около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[7][8].

[править]Нетрадиционная электроэнергетика

Ветряные турбины в Германии.

Основная статья: Альтернативная энергетика

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство ( например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км² ) и малая единичная мощность[1]. Направления нетрадиционной энергетики[3]:

· Малые гидроэлектростанции;

· Ветровая энергетика;

· Геотермальная энергетика;

· Солнечная энергетика;

· Биоэнергетика;

· Установки на топливных элементах

· Водородная энергетика;

· Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[9]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции ( среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[10] ), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[11].

[править]Электрические сети

Электрическая подстанция вБагдаде, Ирак.

Основная статья: Электрическая сеть

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[12]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[13].

[править]Теплоснабжение

ТЭЦ в Финляндии.

Основная статья: Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[14]. Такие условия могут быть реализованы в большинстве стран мира[15] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

· источника тепла, например котельной;

· тепловой сети, например из трубопроводов горячей воды или пара;

· теплоприёмника, например батареи водяного отопления.

[править]Централизованное теплоснабжение

Новосибирская ТЭЦ-5.

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

· Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;

· Котельные, которые делятся на:

· Водогрейные;

· Паровые.

[править]Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

· Малыми котельными;

· Электрическое, которое делится на:

· Прямое;

· Аккумуляционное;

· Теплонасосное;

· Печное.

[править]Тепловые сети

Основная статья: Тепловая сеть

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжноститеплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[1].

Вопрос 2. Энергия, мощность: виды, единицы измерения.

Эне́ргия (др.-греч. ἐνέργεια — «действие, деятельность, сила, мощь») — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».

Мо́щность — физическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.