рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вопрос 8. Разботка молекулярно-кинетической теории теплоты и теории тепловых машин.

Вопрос 8. Разботка молекулярно-кинетической теории теплоты и теории тепловых машин. - раздел Энергетика, Связь энергетики с отраслями промышленности, коммунально-бытовым сектором, уровнем благосостояния Раздел Молекулярной Физики, Рассматривающий Многие Свойства Веществ Исходя Из...

раздел молекулярной физики, рассматривающий многие свойства веществ исходя из представлений о быстром хаотическом движении огромного числа атомов и молекул, из которых эти вещества состоят. Молекулярно-кинетическая теория концентрирует внимание не на различиях между отдельными типами атомов и молекул, а на том общем, что имеется в их поведении. Еще древнегреческие философы, первыми высказывавшие атомистические идеи, полагали, что атомы находятся в непрерывном движении. Количественный анализ этого движения попытался дать Д.Бернулли в 1738. Принципиальный вклад в развитие молекулярно-кинетической теории был сделан в период с 1850 по 1900 Р.Клаузиусом в Германии, Л.Больцманом в Австрии и Дж.Максвеллом в Англии. Эти же физики заложили основы статистической механики - более абстрактной дисциплины, занимающейся изучением того же предмета, что и молекулярно-кинетическая теория, но без построения детальных, а потому менее общих моделей. Углубление статистического подхода в начале 20 в. связано главным образом с именем американского физика Дж.Гиббса, который считается одним из основоположников статистической механики. Революционные идеи были привнесены в эту науку также М.Планком и А.Эйнштейном. В середине 1920-х годов классическая механика окончательно уступила место новой, квантовой, механике. Она дала импульс развитию статистической механики, не прекращающемуся до сих пор.
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ
Известно, что нагретые тела, остывая, отдают часть своей теплоты более холодным телам. До 19 в. считалось, что теплота - это некая жидкость (теплород), перетекающая от одного тела к другому. Одним из главных достижений физики 19 в. стало то, что теплота стала рассматриваться просто как одна из форм энергии, а именно - кинетическая энергия атомов и молекул. Такое представление распространяется на все вещества - твердые, жидкие и газообразные. Частицы нагретого тела движутся быстрее, чем холодного. Например, солнечные лучи, нагревая нашу кожу, заставляют ее молекулы колебаться быстрее, и мы ощущаем эти колебания как тепло. На холодном ветру молекулы воздуха, сталкиваясь с молекулами поверхности нашего тела, отбирают у них энергию, и мы ощущаем холод. Во всех случаях, когда тепло передается от одного тела к другому, движение частиц в первом из них замедляется, во втором ускоряется, а энергия частиц второго тела увеличивается ровно на столько, на сколько уменьшается энергия частиц первого. Многие знакомые нам тепловые явления можно непосредственно объяснить с помощью молекулярно-кинетической теории. Поскольку теплота порождается беспорядочным движением молекул, можно повышать температуру тела (увеличивать запас теплоты в нем) не за счет подвода тепла, а, например, с помощью трения: молекулы трущихся поверхностей, соударяясь друг с другом, начинают двигаться более интенсивно, и температура поверхностей повышается. По той же причине нагревается кусок железа, когда по нему бьют молотом. Еще одно тепловое явление - увеличение давления газов при нагревании. С повышением температуры скорость движения молекул увеличивается, они чаще и сильнее ударяются о стенки сосуда, в котором газ находится, что проявляется в повышении давления. Постепенное испарение жидкостей объясняется тем, что их молекулы одна за другой переходят в воздух, при этом первыми улетучиваются самые быстрые из них, а у тех, которые остаются, энергия в среднем оказывается меньше. Вот почему при испарении жидкостей с влажной поверхности она охлаждается. Математический аппарат, построенный на молекулярно-кинетической теории, позволяет анализировать эти и многие другие эффекты, исходя из уравнений движения молекул и общих положений теории вероятностей. Предположим, что мы подняли резиновый мяч на некоторую высоту, а затем выпустили его из рук. Мяч ударится об пол, а затем несколько раз подскочит, каждый раз на меньшую высоту, чем перед этим, поскольку при ударе часть его кинетической энергии превращается в теплоту. Такой удар называется частично упругим. Кусок свинца совсем не отскакивает от пола - при первом же ударе в теплоту превращается вся его кинетическая энергия, и температура куска свинца и пола слегка повышается. Такой удар называют абсолютно неупругим. Удар, при котором вся кинетическая энергия тела сохраняется, не превращаясь в тепло, называется абсолютно упругим. В газах при столкновении атомов и молекул друг с другом происходит лишь обмен их скоростями (мы не рассматриваем здесь случай, когда в результате столкновений частицы газа взаимодействуют - вступают в химические реакции); суммарная кинетическая энергия всей совокупности атомов и молекул не может при этом превратиться в теплоту, поскольку она уже ею является. Непрерывное движение атомов и молекул вещества называется тепловым движением. В жидкостях и твердых телах картина более сложная: помимо кинетической энергии необходимо учитывать и потенциальную энергию взаимодействия частиц.
Тепловое движение в воздухе. Если воздух охладить до очень низкой температуры, то он превратится в жидкость, при этом объем образовавшейся жидкости будет очень мал. Например, при ожижении 1200 см3 атмосферного воздуха получаются 2 см3 жидкого воздуха. Основное допущение атомной теории состоит в том, что размеры атомов и молекул при изменении агрегатного состояния вещества почти не изменяются. Следовательно, в атмосферном воздухе молекулы должны находиться друг от друга на расстояниях, гораздо больших, чем в жидкости. Действительно, из 1200 см3 атмосферного воздуха более 1198 см3 занимает пустое пространство. Молекулы воздуха движутся хаотически в этом пространстве с очень высокими скоростями, постоянно сталкиваясь друг с другом наподобие бильярдных шаров.
Давление газа или пара. Рассмотрим прямоугольный сосуд, в единице объема которого содержится n молекул газа массой m каждая. Нас будут интересовать только те молекулы, которые ударяются об одну из стенок сосуда. Выберем ось x так, чтобы она была перпендикулярна этой стенке и рассмотрим молекулу, у которой составляющая скорости v вдоль выбранной нами оси равна vx. При ударе молекулы о стенку сосуда ее импульс в направлении оси x изменится на величину -2mvx. В соответствии с третьим законом Ньютона таков же будет импульс, переданный стенке. Можно показать, что если все молекулы движутся с одинаковыми скоростями, то с единицей площади стенки в 1 с сталкивается (1/2) nvx молекул. Чтобы убедиться в этом, рассмотрим пограничный слой газа вблизи одной из стенок, заполненный молекулами с одинаковыми величинами v и vx (рис. 1). Предположим, что толщина этого слоя настолько мала, что большинство молекул пролетают его без столкновений. Молекула А долетит до стенки в момент времени t = l /vx ; к этому времени о стенку ударится ровно половина молекул из пограничного слоя (другая половина движется от стенки). Их число определяется плотностью газа и объемом пограничного слоя площадью А и толщиной l: N = (1/2) nAl. Тогда число молекул, ударившихся о единичную площадку за 1 с, составит N/At = (1/2) nvx, и полный импульс, переданный этой площадке за 1 с, будет равен (1/2) nvx Ч2mvx = nmvx2. На самом деле составляющая vх неодинакова для разных молекул, поэтому величину vx2 следует заменить ее средним значением


и">


. Если молекулы движутся хаотически, то среднее всех vх равно среднему для vy и vz, так что


и

 

<="" div="" style="border-style: none;">

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

 


Рис. 1. ДАВЛЕНИЕ ГАЗА на стенки сосуда можно найти, рассматривая импульс, передаваемый молекулами стенкам.


где - среднее для всех молекул значение v2. Удары молекул о стенку так быстро следуют один за другим, что последовательность передаваемых импульсов воспринимается как постоянное давление Р. Величину Р можно найти, если вспомнить, что давление - это сила, действующая на единицу площади, а сила, в свою очередь, - это скорость изменения импульса. Следовательно, Р равно скорости изменения импульса, приходящегося на единицу площади, т.е.

<="" div="" style="border-style: none;">
Такое же соотношение мы получим, если вместо случайного движения молекул во всех направлениях будем рассматривать движение одной шестой их числа перпендикулярно каждой из шести граней прямоугольного сосуда, считая, что каждая молекула обладает кинетической энергией

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Теория

Работа, совершаемая двигателем, равна:

, где:

· — количество теплоты, полученное от нагревателя,

· — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

– Конец работы –

Эта тема принадлежит разделу:

Связь энергетики с отраслями промышленности, коммунально-бытовым сектором, уровнем благосостояния

Ломоносов возглавлял географический департамент АН руководил работой по созданию географического атласа восстановил глобус после пожара создал... Изобретение паровых машин Принцип... Вопрос Пароход Фултона паровоз Черепановых Пароход Фултона В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вопрос 8. Разботка молекулярно-кинетической теории теплоты и теории тепловых машин.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Связь энергетики с отраслями промышленности, коммунально-бытовым сектором, уровнем благосостояния
Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения

Виды энергии
Виды энергии: Механическая

Естествознание
Основной областью своей деятельности М. В. Ломоносов считал химию, но как показывает его наследие, эта дисциплина, вступая на разных этапах его творчества во взаимодействие с другими разделами есте

Молекулярно-кинетическая теория тепла
Основная статья: Корпускулярно-кинетическая теория М. В. Ломоносова

Физическая химия

Наука о стекле
Основная статья: М. В. Ломоносов: Наука о стекле

Астрономия, опто-механика и приборостроение
26 мая 1761 года, наблюдая прохождение Венеры по солнечному диску, М. В. Ломоносов обнаружил наличие у неё атмосферы.

Теория электричества и метеорология

Гуманитарные науки
С пятидесятых годов учёный облекает плоды размышлений и исследований в живую форму своих речей, произносимых на собраниях Академии и в качестве представителя науки перед общественностью — когда он

Вклад в развитие риторики
Ломоносов в 1743 написал «Краткое руководство к риторике» на русском языке. Основной труд Ломоносова по риторике — «Риторика» 1748 года, которая стала, по сути, первой в России хрестоматией мировой

Грамматика и теория стиля

Поэтическая теория и практика
М. В. Ломоносов осуществил совместно с В. К. Тредиаковским силлабо-тоническую реформу («Письмо о правилах российского стихотворства»), причём именно опыты Ломоносова были восприняты поэтами в качес

История

Педагогические идеи
Научные основы воспитания. Считал главнейшими составными элементами познания: чувственное восприятие, теоретические обобщения и опытную проверку результатов. «Идеями называются пре

Принцип действия
Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых передаётся другим механически. Одно из преимуществ двигателей

Вопрос 5. Работы Карно.
Николя́ Леона́р Сади́ Карно́ (фр. Nicolas Léonard Sadi Carnot; 1 июня 1796 — 24 августа 1832) — французский физик и математик. Сын извест

Пароход Фултона
Уже в 1793 году он представил планы постройки парохода правительствам США и Великобритании. В 1797 году Фултон переехал во Францию. Здесь он экспериментировал с торпедами, а в 1800 предста

Вопрос 7. Первый закон термодинамики.
Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем. Первое начало термодин

Формулировка
Существует несколько эквивалентных формулировок первого начала термодинамики В любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля

Двигатель внутреннего сгорания
[править] Материал из Википедии — свободной энциклопедии Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12

История создания
Основная статья: История создания двигателей внутреннего сгорания В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил

Теория горения
Теория горения При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при

История
Одним из первых электричество привлекло внимание греческого философа Фалеса в VII веке до н. э., который обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρ_

Теория электромагнитного поля
Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультип

Применение электричества в быту.
Широкое распространение электричество в быту получило только в XIX веке — и сразу вошло в моду. Электрические стали многие предметы повседневной жизни. Именно тогда появились в

История

История
Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). Однако только в конце XIX века

Вопрос 18. Котлы
Устройство, устройство, оснащенное топкой, в которой производится сжигание топлива, обогреваемое продуктами сгорания топлива и имеющее предназначение в получении пара с давлением выше атмосферного

Котлы-утилизаторы
Котлы утилизаторы   Котоел утилизатор - это котел, в конструкции которого нет своей топки, принцип его действия основан на испо

Линии электропередач. Виды.
Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического т

Теплофикация
Используемое при теплофикации тепло, как правило, является продуктом отходов производства при выработке электроэнергии или сжигании мусора. Вместо того, чтобы бесполезно отдавать это тепло

Освоение атомной энергетики
Боголюбов Николай Николаевич (1909–1992), математик и физик-теоретик, академик АН УССР, АН СССР. Директор Объединенного института ядерных исследований в Дубне (с 1965). Фундаментальные труды по нел

Схемы теплэнергетических установок
Теплоэнергетические установки, потребляющие около 1 2 млрд. т условного топлива в год, широко применяются в промышленности, на транспорте и в сельском хозяйстве. [1] Тепло

Принцип действия и устройство
Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как

Первичные энергоресурсы, теплота сгорания топлива, условное топливо
Первичные энергоресурсы извлекают из окружающей среды. К первичным энергоресурсам ( ЭР) принято относить традиционные: нефть, газ, уголь, атомную и гидроэнергию, а также нетрадиционные возоб

Топливно-энергетический комплекс
Топливно-энергетический комплекс России — это совокупность отраслей экономики России, связанных с производством и распределением энергии в её различных видах и формах Топл

Особенности
· Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.[1] · Турбины ГЭС допускают работу во всех режимах от нулевой до макс

Судовые энергетические установки
Судовая энергетическая установка — комплекс машин, механизмов, теплообменных аппаратов, источников энергии, устройств и трубопроводов и прочих систем — предназначенных для обеспече

Возобновляемые ресурсы
[править] Материал из Википедии — свободной энциклопедии Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не

Промышленная теплоэнергетика
Промышленная теплоэнергетика имеет дело с широким кругом установок, систем и агрегатов, связанных с получением, преобразованием, транспортировкой и использованием всех видов тепловой энергии

Тепловые электростанции. Принципиальные схемы
Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счет преобразо

Автономные дизельные электростанции
являются основными "рабочими лошадками" там, где по разным причинам централизованное электроснабжение недоступно, либо качество его поставок оставляет желать лучшего. Ничего удивительного

Выработка электроэнергии и теплоты на ТЭЦ
.2. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ И ТЕПЛОТЫ НА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЯХ 20:41 Тепловая электростанция — это предприятие, продукцией которого являет

Тепловые сети. Устройство, основные принципы действия
Назначение тепловых сетей - соединение источников тепла с местами его потребления. Наружными тепловыми сетями (при централизованном теплоснабжении) называют сети, соединяющие источник тепла с пункт

Вторичные энергоресурсы
Вторичные энергетические ресурсы (ВЭР) — это энергия различных видов, покидающая тех

Энергосбережение
Повышение энергоэффективности – это большая макроэкономическая задача, и ожидаемый эффект от ее решения зависит не только от сокращения потребления энергоресурсов, но и от запуска новых иннова

Биосфера в период научно-технического прогресса
Влияние человека на биосферу. С появлением первого современного человека (около 30—40 тыс. лет назад) в эволюции биосферы стал действовать новый фактор — антропический. Получая из

Влияние хозяйственной деятельности человека на биосферу. Охрана биосферы
Биосфера подает сигналы SOS. Большинство явлений в природе являются составляющими кр

Основные загрязнители
· Оксид углерода · Оксиды азота · Диоксид серы · Углеводороды · Альдегиды · Тяжёлые металлы (Pb, Cu, Zn, Cd, Cr) · Аммиак · Атмосферна

Локальные и глобальные загрязнения атмосферы. Парниковый эффект. Квоты на выбросы со2
Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, набл

Мониторинг ос
Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды п

Виды мониторинга
В общем виде процесс экологического мониторинга можно представить схемой: окружающая среда (либо конкретный объект окружающей среды) -> измерение параметров -> сбор и передача информации ->

Сжигание в кипящем слое
[править] Материал из Википедии — свободной энциклопедии Сжигание в кипящем слое — одна из технологий сжигания твёрдых топлив в энергетических котлах, при которой

Радиоактивные загрязнения
Источники радиоактивного загрязнения в основном техногснного происхождения. Это экспериментальные взрывы атомных, водородных и нейтронных бомб; различные производства, связанные с изготовлением тер

Проблема переработки использованного ядерного топлива. Контроль радиоактивных загрязнений.
При работе ядерного реактора, топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим, отработанные ТВЭЛы направляют на переработку для регенераци

Способы повышения КПД тепловых двигателей, экономмии энергетических ресурсов
Коэффициент полезного действия (КПД) теплового двигателя.Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов

Турбины.
55. тепловые насосы. Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю

Циклы и виды двс
Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется

Ипы двигателей внутреннего сгорания

Паро и теплогенераторы
Парогенератор или теплогенератор (водонагрева­тель)— обязательный элемент любой двух- или трехкон-турной АТЭЦ или ACT, разделяющий первый и второй контуры и принадлежащий в равной мере как тому, та

Водяные экономайзеры
Экономайзер (англ. Economizer, от английского слова economize — «сберегать») — элемент котлоагрегата, теплообменник, в котором питательная вода перед подачей в котёл подогрева

Рекуперативные воздухоподогреватели
В таких воздухоподогревателях тепло передаётся от газов к воздуху через металлическую стенку трубы. [править]Стальные трубчатые воздухоподогреватели (ТВП) Наиболь

Холодильные установки

Цикл карно, термический кпд
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и мини

Описание цикла Карно

Единая энергетическая система
Единая энергетическая система России (ЕЭС России) — совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом произ

Преимущества объединения электрических станций и сетей в ЕЭС России
Параллельная работа электростанций в масштабе Единой энергосистемы позволяет реализовать следующие преимущества[4]: · снижение суммарного максимума нагрузки ЕЭС России на 5 ГВт;

Альтернативные источники энергии.
Зачем нам нужны альтернативные источники энергии? Современное общество с каждым днем испытывает все большую потребность в неисчерпаемых энергетических источниках, ведь использование нефти, угля и г

Системы подготовки для сжигания оплива
Использование: на ТЭЦ и в котельных при применении в качестве топлива угля, отходов углеобогащения, сланцев и других видов твердого топлива. Сущность изобретения: система включает линию подачи исхо

Области применения
В любых приборах/инженерных системах/и др., служащих для передачи/распределения тепла используется теплоноситель, например: системы отопления зданий, холодильник, кондиционер, масляный обогреватель

Централизованное теплоснабжение
 В деловых, жилых и промышленных районах городов умеренного и холодного климата экономически выгодно использовать тепло от централизованного источника тепла (ТЭЦ). В таких районах

Детали соглашения
Период подписания протокола открылся 16 марта 1998 года и завершился 15 марта 1999 года. [править]Количественные обязательства Киотский протокол стал первым глоба

Стационарные применения

Топливо
Хотя большая часть стационарных топливных элементов в настоящее время работает на природном газе, всё большее количество установок использует альтернативные виды топлива. В 2005 году усилился тренд

Компании — основные производители
Компания Страна Технология Мощность установок Ansaldo Fuel Cells Италия MCFC 500

Причины
Специалисты, обсудившие проблему в Фукусиме, подчеркнули, что в отличие от крупных аварий на атомных электростанциях, произошедших в предыдущие десятилетия (на американской АЭС Three Mile Island и

Ликвидация
Участники дискуссии подчеркнули, что сотрудников АЭС и спасателей нельзя винить в том, что ликвидация аварии велась недостаточно быстрыми темпами. Дело в том, что им приходилось действовать в экстр

Последствия
В последнее десятилетие в мире наблюдался процесс, названный «ядерным ренессансом»: многие государства мира начали реализацию масштабных программ строительства новых реакторов. Дополнительным факто

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги