Реферат На тему: «Атомная физика: масса и размеры атомов, устойчивость атомов, изотопы, дефект массы, атомная энергия и атомное оружие».

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АКАДЕМИЯ ГРАЖДАНСКОЙ ЗАЩИТЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫЙ БЕДСТВИЙ».

 

КАФЕДРА ГМУ

 

Реферат.

по курсу: «Концепция современного естествознания»

На тему: «Атомная физика: масса и размеры атомов, устойчивость атомов, изотопы, дефект массы, атомная энергия и атомное оружие».

 

Выполнил: студент

2124А уч.группы

Евдокимов В.А.

Руководитель:

Булгаков В.И.

 

Дата:

« 17» марта 2012 г.

 

Химки 2012 г.

 

Введение.

Атомная физика возникла на рубеже 19-20 вв. на основе исследований оптических спектров. Она занималась изучением строения атома и изучением его свойств. Была разработана количественная теория атома. Последующие исследования свойств атомов и электронов завершились созданием квантовой механики — физической теории, описывающей законы микромира. Квантовая механика является теоретическим фундаментом атомной физики, а она в свою очередь выступает опытным полигоном. Атомной физикой установлены оптические спектры атомов различных химических элементов, связь закономерностей спектров с системой энергетических уровней, подтвердила то, что внутренняя энергия атома квантуется и изменяется дискретно. Вследствие изучения радиоактивности произошло выделение ядерной физики, изучающей взаимопревращение элементарных частиц — физика элементарных частиц. Атомная физика добилась огромных успехов в изучении процессов, происходящих в атомных ядрах и взаимопревращение элементарных частиц. Но эта дисциплина изучает ту часть, в которой не происходит изменение с самим ядром, а только с электронной оболочкой. Ядерная физика изучает превращения атомных ядер, происходящие как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Достижения ядерной физики немыслимы без использования достижений физики и техники ускорителей заряженных частиц. Именно создание различных ускорителей элементарных частиц помогли исследователям во многих проблемах изучения атомных ядер и их превращений. Важной частью ядерной физики является нейтронная физика, занимающаяся ядерными реакциями, происходящими под действием нейтронов. Современная ядерная физика распадается на две взаимосвязанные ветви — теоретическую и экспериментальную ядерную физику. Теоретическая работает с моделями атомных ядер и ядерных реакций. Экспериментальная ядерная физика использует богатый арсенал

 

современных исследовательских средств, включая ядерные реакторы (как источники мощных пучков нейтронов), ускорители заряженных частиц (как источник ускоренных электронов, протонов, ионов, мезонов и т.д.), разнообразные детекторы частиц.1 Ядерно-физические исследования имеют огромное чисто научное значение, позволяя глубже проникать в тайны природы. В то же время эти исследования важны и для практического использования в ядерной энергетике, медицине, в ядерных реакторах на ледоколах, для изучения ядерных реакций для использования в мирных целях, для синтеза материалов. Наша работа также посвящена ядерным реакциям, радиоактивности и способам защиты от результатов ядерных реакций.

Атом — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента. Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

 

Масса атома.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В…  

Размер-(радиус) атома.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2… Учёные из Харьковского физико-технического института представили первые в…  

Устойчивость атомов .

Раз заряды не могут иметь устойчивого положения, то, разумеется, неправильно представлять вещество построенным из статических точечных зарядов… В свое время предлагалось считать… Затем Резерфорд и Бор предположили, что равновесие может быть динамическим — электроны обращаются по орбитам (фиг.…

Изотопы.

Массовое число И. приводится сверху слева от химического символа элемента. Например, И. гелия обозначаются: 3He,4He, 6He, 8He. Более развёрнутые… Массы атомов М, выраженные в атомных единицах массы, лишь немного отличаются… Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические…

Дефект массы.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его… Если Wсв - величина энергии, выделяющейся при образовании ядра, то… Если ядро с массой Mяд образовано из Z протонов с массой mp и из (A-Z) нейтронов с массой mn, то Dm=Zmp+(A-Z)mn-Mяд. …

Атомная энергия.

Уже в конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата… Но из-за начавшейся войны, все исследования были перенаправлены в военную… Но столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его…

Атомное оружие.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и…  

Современные атомные бомбы и снаряды.

Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т, относят к классу тактических атомных бомб и предназначают для решения… Нужно отметить, что подобная классификация атомного оружия является лишь… Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных…

Современное термоядерное оружие.

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при… Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком… В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим…

Чистая водородная бомба.

Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество…  

Атом и экология.

Количество радиоактивных веществ, выпадающих на землю, зависит и от вида взрыва – воздушный, наземный, подводный, подземный (в двух последних… Из всех радиоактивных веществ, выпадавших на землю, наиболее опасным являлся… В этой связи трудно переоценить роль договора о запрещении ядерных испытаний в трех сферах (на земле, под водой и в…

Заключение.

 

Развитие знаний и представлений об окружающем мире шло и идет от открытия одного класса многообразий структурных объектов к другому, более сложному для восприятия на данном историческом этапе. От атомов не разрезаемых - к атому в виде некоторой системы, структурными элементами которой являются электроны оболочки и центральное (неделимое) ядро.

Затем вскрывается нуклонная структура ядра, а в дальнейшем - и структура самих нуклонов И каждый раз человеческий разум ищет то внутреннее единство, которое позволяет охватить новое многообразие.

Для эпохи Аристотеля достаточно было четырех первоэлементов, для времени Д. И. Менделеева многообразие атомов занимало примерно 120 клеток его таблицы. В середине 60х годов нашего столетия число открытых элементарных частиц превысило 350. Современная таблица фундаментальных структурных элементов содержит три поколения элементарных частиц. Это в общем счете 12 кварков и антикварков, 8 глюонов, 6 лептонов с их античастицами, фотоны и гравитоны.

Некоторое время назад казалось, что достаточно будет трех кварков, чтобы построить все остальное. Но открываются новые составляющие и идея малого числа фундаментальных основ не подтверждается. В последнее время в современном естествознании все больше вырисовывается другой подход. Он основан на признании принципа обязательной вариативности структурных элементов для сложных природных систем, будь то система элементарных частиц, или биоценоз.

Только при наличии некоторого минимального, но разнообразного набора можно построить функционально и структурно сложные системы. Само осознание принципа допустимости и необходимости, обязательности разнообразия элементов становится достоянием общей культуры человечества.

Опыт развития естествознания от классического к современному показал, что изучение иерархии структурных уровней частиц вещества неизбежно приводит к более глубокому пониманию свойств пространства и времени. И к осознанию того факта, что геометрические свойства пространственно-временного континиума могут определять численные значения фундаментальных констант нашего мира - гравитационной постоянной, заряда электрона, спектра масс-энергий элементарных частиц.

Ещё одно важное положение современного естествознания заключается в признании принципиальной невозможность изолировать отдельную частицу-объект в микромире, выделить полностью её из "контекста" процессов виртуальных взаимопревращений. Здесь только факт наличия наблюдателя - соучастника позволяет реализоваться одному из многих вероятных путей дальнейшей истории микрочастицы и исследуемого процесса в целом. По этой же причине следует считать грубым приближением выделение субъекта - человека из объективной реальности, в которой он существует.

Большинство явлений в окружающем человека мире относятся к процессам в открытых динамических системах, в противоположность представлениям классического естествознания об определяющей роли замкнутых или изолированных систем. Это понимание чрезвычайно важно в связи с явлениями самоорганизации в неживой и живой Природе. И о взаимосвязи двух компонент культуры - естественнонаучной и гуманитарной. А. Эйнштейн говорил, что Достоевский дал ему больше, чем все изучение математики. С другой стороны, по нашему мнению, феномен абстракционизма и авангардизма не мог бы состояться вне атмосферы влияния на гуманитарную культуру специальной теории относительности и идей квантовой физики. В частности, с его искажениями перспективы и форм, изогнутыми циферблатами часов, определенно несет отпечаток времени становления СТО и проникновения идей относительности в общую культуру. Теории, в которой пространство "сжимается", а временные интервалы "растягиваются" в зависимости от условий движения.

 

 

Литература.

А.М. Букринский, В.А. Сидоренко, Н.А. Штейнберг "Безопасность атомных станций и ее государственное регулирование", Атомная энергия, том 68, вып. 5, май 1990 г.

Дж. Фейнберг, Из чего сделан мир? Атомы, лептоны, кварки и другие загадочные частицы. М.: Мир, 1981.

Кудрявцев П.С. Курс истории физики. // М., Просвещение, 1982 г.

 

Сайт в интернете.

http://ru.wikipedia.org