рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТЕОРЕМА ГАУССА В ИНТЕГРАЛЬНОЙ ФОРМЕ И ЕЕ ПРИМЕНЕНИЕ К РАСЧЕТУ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

ТЕОРЕМА ГАУССА В ИНТЕГРАЛЬНОЙ ФОРМЕ И ЕЕ ПРИМЕНЕНИЕ К РАСЧЕТУ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ - Лекция, раздел Энергетика, КОНСПЕКТ ЛЕКЦИЙ ЭЛЕКТРОСТАТИКА Если Известно Расположение Зарядов, То Электрическое Поле ...

Если известно расположение зарядов, то электрическое поле зарядов можно найти по принципу суперпозиции. Однако применение этого метода в каждом отдельном случае требует довольно сложных вычислений. Задача может быть решена довольно просто применением некоторых теорем, которые мы здесь рассмотрим.

Вычислим поток вектора через бесконечно малую площадку . Будем считать, что поле создано точечным зарядом в вакууме, находящимся в точке (рис.1.1.7). Из заряда проведем радиус-вектор к площадке . Тогда поток вектора через эту площадку будет равен:

.

Произведение равно проекции площадки на поверхность, перпендикулярную к . Это произведение положительно, если из видна внутренняя сторона площадки (угол острый), и отрицательно, если видна ее внешняя сторона (угол тупой), то есть , где - абсолютная величина перпендикулярной к проекции площадки . Пусть - телесный угол, под которым площадка видна из точки . Тогда (совпадает с элементом шаровой поверхности радиуса , проведенной из точки , поэтому ). Тогда для потока вектора имеем

Углу будем приписывать положительный знак, если из точки видна внутренняя сторона , и отрицательный, если внешняя. Тогда:

- в поле положительного заряда поток напряженности через произвольно ориентированную площадку зависит от величины заряда, образующего поле и от телесного угла , под которым эта площадка видна из занимаемой зарядом точки .

Тогда поток вектора через конечную поверхность равен

где - положительный или отрицательный телесный угол, под которым видна из точки вся поверхность .

Рассмотрим замкнутую поверхность . В этом случае заряд может находиться либо внутри поверхности , либо вне ее.

Пусть заряд находится внутри замкнутой поверхности . Эта поверхность окружает его со всех сторон и видна из них под углом , тогда

Если же заряд находится в точке , лежащей вне поверхности (рис.1.1.8), то из точки можно провести касательные к , образующие конус, соприкасающийся с по замкнутой кривой , которая разделит на две части и . Обе эти поверхности видны из точки под одним и тем же углом, причем одна поверхность - с внутренней стороны , а другая - с внешней, то есть углы и , соответствующие этим поверхностям будут иметь разные знаки, при этом . Тогда и потоки через эти поверхности будут равны и имеют разные знаки, поэтому - поток вектора через всякую замкнутую поверхность, не охватывающую заряд , равен нулю:

Полученные результаты справедливы для любой систему электрических зарядов. Действительно, пусть поле образовано системой зарядов . Согласно принципу суперпозиции, напряженность результирующего поля Поток результирующего вектора равен , где , и Эта формула выражает собой теорему Гаусса:

В произвольном электростатическом поле в вакууме поток вектора напряженности через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную .

Если сумма , то - линии напряженности выходят из поверхности, если , - линии напряженности входят в поверхность. Из теоремы Гаусса следует:

1. Линии напряженности могут начинаться только в местах положительных зарядов, а заканчиваться только в местах отрицательных зарядов.

2. Если мы возьмем замкнутую поверхность, охватывающую заряды, алгебраическая сумма которых равна нулю, то полный поток вектора напряженности через поверхность равен нулю. Это означает, что число линий, выходящих из объема, ограниченного данной поверхностью, равно числу линий, входящих в объем.

Если замкнутая поверхность проведена в поле так, что внутри нее нет зарядов, то линии напряженности будут ее пронизывать, не начинаясь, и не кончаясь внутри нее. Следовательно, число входящих линий равно числу выходящих линий, и полный поток напряженности через поверхность также равен нулю.

Рассмотрим расчет простейших электрических полей с применением теоремы Гаусса.

1.Найдем напряженность электрического поля бесконечной нити, заряженной с линейной плотностью заряда (рис.1.1.9). Построим гауссову поверхность в виде цилиндра, ось которого совпадает с нитью. Радиус цилиндра r, высота h . В силу симметрии рассматриваемого поля линии вектора напряженности расходятся радиально от нити, и поток вектора отличен от нуля только через боковую поверхность цилиндра:

Очевидно, на одинаковом расстоянии r от нити значения Е будут одинаковы, поэтому Согласно теореме Гаусса

где - заряд, заключенный внутри гауссова цилиндра. Тогда

и - напряженность поля заряженной нити на расстоянии r от нее.

2. Поле бесконечной однородной заряженной плоскости. Поверхностная плотность заряда во всех точках плоскости одинакова . Напряженность поля перпендикулярна к плоскости. В симметричных относительно плоскости точках напряженность поля одинакова по величине и противоположна по направлению. Построим цилиндрическую поверхность с образующими, перпендикулярными к плоскости, и основаниями (рис.1.1.10). В силу симметрии .

Поток через боковую поверхность равен нулю, так как вектор перпендикулярен к этой поверхности, таким образом суммарный поток через поверхность цилиндра равен , и .

3.Рассмотрим электрическое поле, созданное двумя разноименно заряженными плоскостями с поверхностными плотностями заряда и . Очевидно, напряженности полей плоскостей направлены в одну сторону (от положительной плоскости к отрицательной, рис.1.1.11), и результирующая напряженность , где - напряженность поля одной заряженной плоскости. Окончательно получаем

4.Вычислим напряженность электрического поля, создаваемого заряженной сферой радиуса R. Заряд сферы q, его поверхностная плотность Для определения напряженности построим гауссову поверхность в виде сферы радиуса r, центр которой совпадает с центром заряженной сферы (рис.1.1.12).

При r≤R внутри гауссовой поверхности зарядов нет, так как весь заряд распределен по поверхности сферы. По теореме Гаусса или , следовательно, - напряженность электрического поля внутри заряженной сферы равна нулю.

При внутрь гауссовой поверхности попадает весь заряд q сферы. В силу центральной симметрии поля напряженность на расстоянии r от центра сферы всюду одинакова, и или при этом , тогда , и С ростом r значения Е убывают пропорционально (рис.1.1.13). На поверхности сферы напряженность испытывает скачек

5.Рассмотрим электрическое поле, созданное объемно заряженным шаром радиуса R . Объемная плотность заряда шара ρ. Гауссову поверхность построим в виде сферы, центр которой совпадает с центром шара, а радиус равен r (рис.1.1.14).

При внутрь гауссовой поверхности попадает заряд , тогда по теореме Гаусса , и . На поверхности шара при r=R напряженность .

При внутрь гауссовой поверхности попадает весь заряд , и , отсюда На поверхности сферы т.е. и скачка напряженности не происходит. Зависимость представлена на рис. 1.1.15.

 

– Конец работы –

Эта тема принадлежит разделу:

КОНСПЕКТ ЛЕКЦИЙ ЭЛЕКТРОСТАТИКА

ЭЛЕКТРОСТАТИКА... Лекция... ОСНОВЫ ЭЛЕКТРОСТАТИКИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТЕОРЕМА ГАУССА В ИНТЕГРАЛЬНОЙ ФОРМЕ И ЕЕ ПРИМЕНЕНИЕ К РАСЧЕТУ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
Электрическое, или электростатическое взаимодействие – это один из фундаментальных видов взаимодействия, рассматриваемых в физике. Электрические силы действуют, например, между электронами и протон

ЗАКОН КУЛОНА
Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ
Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами. На всякий другой заряд, внесенный в это пространство, действуют электростатические си

ПРИНЦИП СУПЕРПОЗИЦИИ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ
Основная задача электростатики заключается в том, чтобы по заданному распределению в пространстве и величине источников поля – электрических зарядов, найти величину и направление вектора напряженно

ГУСТОТА ЛИНИЙ НАПРЯЖЕННОСТИ. ПОТОК ВЕКТОРА НАПРЯЖЕННОСТИ
Силовую линию поля (линию напряженности) можно провести через любую точку пространства, так что число проводимых линий ничем не ограничено. Линия напряженности в этом случае дает лишь направление н

ТЕОРЕМА ГАУССА В ДИФФЕРЕНЦИАЛЬНОЙ ФОРМЕ. ДИВЕРГЕНЦИЯ ВЕКТОРНОГО ПОЛЯ
Рассмотрим теперь дифференциальную форму теоремы Гаусса. Пусть в некоторой точке

СВЯЗЬ МЕЖДУ НАПРЯЖЕННОСТЬЮ И ПОТЕНЦИАЛОМ
Электрическое поле можно описывать либо с помощью векторной величины (силовая характеристика), либо с помощью ск

УРАВНЕНИЕ ПУАССОНА И ЛАПЛАСА ДЛЯ ПОТЕНЦИАЛА
По теореме Гаусса . Подставим выражение, связывающее напряженность и потенциал

ЭКВИПОТЕНЦИАЛЬНЫЕ ПОВЕРХНОСТИ
Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Уравнение эквипотенциальной поверхности.:

ДИЭЛЕКТРИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ
1.2.1.ПОЛЯРНЫЕ И НЕПОЛЯРНЫЕ МОЛЕКУЛЫ Если диэлектрик внести в электрическое поле, то и поле, и диэлектрик претерпевают изменения. В составе атомов и молек

ДИПОЛЬ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ
Если диполь поместить в однородное электрическое поле, то на заряды диполя и

ВЕКТОР ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ (ЭЛЕКТРОСТАТИЧЕСКОЙ ИНДУКЦИИ). ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ДИЭЛЕКТРИКОВ
Источниками электрического поля служат не только сторонние, но и связанные заряды, т.е. , или

ГРАНИЧНЫЕ УСЛОВИЯ ДЛЯ ВЕКТОРОВ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ И ЭЛЕКТРИЧЕСКОГО СМЕЩЕНИЯ
Можно показать, что линии смещения при переходе через границу диэлектриков не претерпевают разрыва. Поместим в

СИЛЫ, ДЕЙСТВУЮЩИЕ НА ЗАРЯД В ДИЭЛЕКТРИКЕ
Если в электрическое поле в вакууме внести заряженное тело таких размеров, что внешнее поле в пределах тела можно считать однородным, т.е. тело рассматриваит как точечный заряд, то на тело будет де

ПРОВОДНИК ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ. ЭЛЕКТРОСТАТИЧЕСКАЯ ЗАЩИТА
Если незаряженный проводник внести во внешнее электростатическое поле, то под влиянием электрических сил свободные электроны будут перемещаться в нем в направлении, противоположном направлению напр

ЭЛЕКТРОЕМКОСТЬ ПРОВОДНИКОВ
Рассмотрим проводник, находящийся в однородной среде вдали от других проводников. Такой проводник называется уединенным. При сообщении этому проводнику электричества, происходит перераспределение е

ЭЛЕКТРОЕМКОСТЬ КОНДЕНСАТОРОВ
Рассмотрим проводник , вблизи которого имеются другие проводники. Этот проводник уже нельзя считать уединенным,

СОЕДИНЕНИЯ КОНДЕНСАТОРОВ
1. Параллельное соединение. Рассмотрим батарею конденсаторов, соединенных одноименными обкладками (рис.1.3.6).

ЭНЕРГИЯ ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. ТЕОРЕМА ИРНШОУ
Рассмотрим систему двух точечных зарядов и

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПРОВОДНИКА
Будем считать среду, в которой находятся электрические заряды и заряженные тела, однородной и изотропной, не обладающей сегнетоэлектрическими свойствами. Заряжая некоторый проводник, необх

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА. ОБЪЕМНАЯ ПЛОТНОСТЬ ЭНЕРГИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ
Пусть потенциал обкладки конденсатора, на которой находится заряд , равен

ЭНЕРГИЯ ПОЛЯРИЗОВАННОГО ДИЭЛЕКТРИКА. ОБЪЕМНАЯ ПЛОТНОСТЬ ЭНЕРГИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ
Рассмотрим однородный изотропный диэлектрик, находящийся во внешнем электрическом поле. Процесс поляризации связан с работой по деформации электронных орбит в атомах и молекулах и по повороту осей

ЭНЕРГИЯ СИСТЕМЫ ЗАРЯЖЕННЫХ ПРОВОДНИКОВ
Рассмотрим систему из двух проводников в вакууме. Один проводник создает поле , другой

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ ДЛЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В НЕСЕГНЕТОЭЛЕКТРИЧЕСКОЙ СРЕДЕ
Энергия электрического поля, создаваемого какой-либо системой заряженных тел (проводников, диэлектриков), измен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги