рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные законы и правила теории вероятностей

Основные законы и правила теории вероятностей - раздел Энергетика, Дисциплина надежность энергосистем рассматривает общие вопросы надежности электроэнергетических систем ЭЭС   Вероятности Сложных Событий Можно Вычислять С Помощью Вероятн...

 

Вероятности сложных событий можно вычислять с помощью вероятностей более простых, пользуясь основными правилами (теоремами): сложения и умножения вероятностей.

II.2.4.1. Теорема сложения вероятностей.

Если А1, А2, …, Аn - несовместные события и А – сумма этих событий, то вероятность события А равна сумме вероятностей событий А1, А2, …, Аn:

 

(3.12)

 

Эта теорема непосредственно следует из аксиомы сложения вероятностей (3.8).

В частности, поскольку два противоположных события А и несовместны и образуют полную группу, то сумма их вероятностей

 

P(A) + P( ) = 1 (3.13)

 

Чтобы сформулировать в общем случае теорему умножения вероятностей, введем понятие условной вероятности.

Условная вероятность события А1 при наступлении события А2 – вероятность события А1, вычисленная в предположении, что событие А2 произошло:

 

P(А1 А2) = P(А1 А2)/P(А2). (3.14)

 

II.2.4.2. Теорема умножения вероятностей.

Вероятность произведения (совместного появления) двух событий А1 и А2 равна вероятности одного из них, умноженной на условную вероятность другого, в предположении, что первое событие произошло:

 

(3.15)

 

Для любого конечного числа событий теорема умножения имеет вид

 

(3.16)

 

В случае, если события А1 и А2 независимы, то соответствующие условные вероятности

 

 

поэтому теорема умножения вероятностей принимает вид

 

(3.17)

 

а для конечного числа n независимых событий

 

(3.18)

 

Следствием правил сложения и умножения вероятностей является теорема о повторении опытов (схема Бернулли): опыты считаются независимыми, если вероятность того или иного исхода каждого из них не зависит от того, какие исходы имели другие опыты.

Пусть в некотором опыте вероятность события А равна P(А) = p, а вероятность того, что оно не произойдет P( ) = q, причем, согласно (3.13)

 

P(A) + P( ) = p + q = 1

 

Если проводится n независимых опытов, в каждом из которых событие А появляется с вероятностью p, то вероятность того, что в данной серии опытов событие А появляется ровно m раз, определяется по выражению

 

(3.19)

 

где - биномиальный коэффициент.

 

Например, вероятность однократной ошибки при чтении 32-разрядного слова в формате ЭВМ, представляющего комбинацию 0 и 1, при вероятности ошибки чтения двоичного числа p = 10-3, составляет по (3.19)

 

 

где q = 1- p = 0,999; n = 32; m = 1.

 

Вероятность отсутствия ошибки чтения при m = 0, C032 = 1

 

 

Часто возникают задачи определения вероятностей того, что некоторое событие А произойдет по меньшей мере m раз или не более m раз. Подобные вероятности определяются сложением вероятностей всех исходов, которые составляют рассматриваемое событие.

 

Расчетные выражения для такого типа ситуаций имеют вид:

 

 

где Pn(i) определяется по (3.19).

 

При больших m вычисление биномиальных коэффициентов Cnm и возведение в большие степени p и q связано со значительными трудностями, поэтому целесообразно применять упрощенные способы расчетов. Приближение, называемое теоремой Муавра-Лапласа, используется, если npq>>1, а |m-np|<(npq)0,5, в таком случае выражение (3.19) записывается:

 

(3.20)

 

2. 5. Формула полной вероятности и формула Байеса (формула вероятностей гипотез)

 

В практике решения большого числа задач формула полной вероятности (ФПВ) и формула Байеса, являющиеся следствием основных теорем, находят широкое применение.

II.2.5.1.Формула полной вероятности.

Если по результатам опыта можно сделать n исключающих друг друга предположений (гипотез) H1, H2, … Hn, представляющих полную группу несовместных событий (для которой ), то вероятность события А, которое может появиться только с одной из этих гипотез, определяется:

 

P(A) = P(Hi ) P(A Hi ), (3.21)

 

где P(Hi) – вероятность гипотезы Hi;

P(А| Hi) – условная вероятность события А при гипотезе Hi.

 

Поскольку событие А может появиться с одной из гипотез H1, H2, … Hn, то А = АH1 H2 АHn , но H1, H2, … Hn несовместны, поэтому

 

В виду зависимости события А от появления события (гипотезы) Hi

P(AHi) = P(Hi)· P(А| Hi), откуда и следует выражение (3.21).

 

2.5.2.Формула Байеса (формула вероятностей гипотез).

 

Если до опыта вероятности гипотез H1, H2, … Hn были равны P(H1), P(H2), …, P(Hn), а в результате опыта произошло событие А, то новые (условные) вероятности гипотез вычисляются:

 

(3.22)

 

Доопытные (первоначальные) вероятности гипотез P(H1), P(H2), …, P(Hn) называются априорными, а послеопытные - P(H1| А), … P(Hn| А)апостериорными.

Формула Байеса позволяет «пересмотреть» возможности гипотез с учетом полученного результата опыта.

Доказательство формулы Байеса следует из предшествующего материала. Поскольку P(Hi А) = P(Hi) P(А| Hi) = P(Hi) P(Hi| А):

 

 

откуда, с учетом (3.21), получается выражение (3.22).

 

Если после опыта, давшего событие А, проводится еще один опыт, в результате которого может произойти или нет событие А1, то условная вероятность этого последнего события вычисляется по (3.21), в которую входят не прежние вероятности гипотез P(Hi), а новые - P(Hi| А):

 

(3.23)

 

Выражение (3.23) называют формулой для вероятностей будущих событий.

 

3.1. Случайные величины и их характеристики.

 

Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение, причем заранее неизвестное. Различают дискретные и непрерывные случайные величины.

Дискретная случайная величина – величина, принимающая только отделенные (разрозненные) друг от друга значения, которые можно заранее перечислить (например, число агрегатов, вышедших одновременно из работы).

Если дискретная случайная величина Х принимает значения Х1, Х2, …, Хm c заданными вероятностями Р1, Р2, …, Рm , то соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения.

Для дискретных случайных величин закон распределения вероятностей наиболее просто задать с помощью таблиц распределения.

Непрерывная случайная величина – величина, возможные значения которой непрерывно заполняют некоторый промежуток (интервал) – например, изменения нагрузки.

 


– Конец работы –

Эта тема принадлежит разделу:

Дисциплина надежность энергосистем рассматривает общие вопросы надежности электроэнергетических систем ЭЭС

Дисциплина надежность энергосистем рассматривает общие вопросы надежности электроэнергетических систем ээс проблема надежности ээс связана с.. основная цель дисциплины изложение основ теории надежности и методов их.. решение основных задач надежности электро энергетических систем предусматривает достижение оптимального соотношения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные законы и правила теории вероятностей

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ТЕОРИИ НАДЕЖНОСТИ
  Электроэнергетика является основой развития промышленности, транспорта, коммунального и сельского хозяйства и служит базой для повышения технико-экономического потенциала страны. От

НАДЕЖНОСТЬ ЭЭС - КОМПЛЕКСНОЕ СВОЙСТВО
  Надежность электроэнергетической системы – свойство комплексное, включающее в себя ряд свойств: безотказность, долговечность, ремонтопригодность, сохраняемость, устойчивоспособность

ПОТОКИ ОТКАЗОВ ЭЛЕМЕНТОВ И ИХ СВОЙСТВА
  Электроэнергетические объекты характеризуются различными состояниями: рабочим, работоспособным, резервным, отказа, аварийного ремонта, простоя, предупредительного ремонта.

Основы теории множеств.
  Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Одним из основных понятий является понятие случайного события (в даль

Алгебра событий.
  В прикладных задачах основными являются не прямые, а косвенные методы вычисления вероятностей интересующих нас событий через вероятности других, с ними связанных. Для этого нужно ум

Аксиомы теории вероятностей
  Сопоставим каждому событию А число, называемое, как и прежде, его вероятностью и обозначаемое P(A) или P{A}. Вероятность выбирают так, чтобы она удовлетворяла следующим услов

Единичные показатели надежности.
Их можно подразделить на показатели безотказности и восстанавливаемости. Основной количественной характеристикой безотказности является вероятность безотказной работы

Причины отказов основных элементов электроэнер-гетических систем.
В процессе эксплуатации элементов в материалах, из которых они изготовляются, вследствие термических, механических воздействий, электромагнитных полей, агрессивной среды, снижения показателей качес

Причины отказов энергетических блоков.
Отказы энергоблоков электростанций определяются в основном отказами теплосилового, гидромеханического оборудования и генераторов (табл. 6.1). Период приработки мощных энергоблоков зависит от номина

Причины отказов синхронных генераторов.
Отказы синхронных машин из-за повреждений обмотки статора происходят в два раза чаще, а из-за повреждений активной стали - в десять раз реже, чем из-за повреждений обмотки ротора. Повреждения систе

Причины отказов силовых трансформаторов.
Основными причинами повреждения трансформаторов явля­ются: — нарушения изоляции обмоток вследствие воздействия внешних и внутренних перенапряжений, сквозных токов коротких замыканий, дефек

ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ НАДЕЖНОСТИ ПО МЕТОДУ ПРИВЕДЕННЫХ ЗАТРАТ
Недоотпуск электроэнергии объясняется перерывами и ограничениями в электропотреблении. Размер убытков определяет надёжность схемы электрической сети. Исходные данные для анализа надёжности

В зависимости от длительности сооружения и условий поочередного ввода приведенные затраты исчисляются по-разному.
Если строительство и пуск в эксплуатацию осуществляются в течение года, то

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги