рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Типы подогревателей и схемы их включения

Типы подогревателей и схемы их включения - раздел Энергетика, ЛЕКЦИЯ 1 Раздел I. ПРОБЛЕМЫ РАЗВИТИЯ ЭНЕРГЕТИКИ Расход Пара На Подогреватель Зависит От Его Типа, Схемы Включения, Параметров...

Расход пара на подогреватель зависит от его типа, схемы включения, параметров пара и воды.

Для регенеративного подогрева воды на электростанции применяют преимущественно поверхностные подогреватели и частично – смешивающие. Смешивающие подогреватели энергетически выгоднее, так как в них возможен наиболее высокий подогрев воды – до температуры насыщения греющего конденсируемого пара:

и ,

где – температуры, а – энтальпии соответственно подогретой воды и конденсата греющего пара.

Смешивающие подогреватели дешевле и надежнее поверхностных, обеспечивают лучший водный режим установки. Однако после каждого смешивающего подогревателя (за отдельными исключениями) необходима установка перекачивающих насосов, так как давление в каждом последующем по ходу воды подогревателе выше, чем в предыдущем (см. рис. 7.4).

Поверхностные подогреватели свободны от этого недостатка: достаточно иметь конденсатный насос, перекачивающий воду через группу поверхностных подогревателей низкого давления (ПНД), и питательный насос, перекачивающий воду через группу подогревателей высокого давления (ПВД) (рис. 7.5).

В поверхностных подогревателях из-за термического сопротивления металла трубок вода нагревается до температуры ниже температуры насыщения (конденсации) греющего пара:

,

где – недогрев воды до состояния насыщения по температуре оС.

 
 

 

Рис. 7.4. Схема регенеративного подогрева воды в смешивающих

подогревателях (многоступенчатый подогрев)

 
 

Рис. 7.5. Схема турбоустановки с поверхностными подогревателями низкого давления (ПНД), смешивающим подогревателем (Д) и подогревателями

высокого давления (ПВД):

ДН – дренажный насос, СМ – смеситель, КН – конденсатный насос,

ПН – питательный насос

 

Значения недогрева воды определяют технико-экономическим расчетом; чем меньше недогрев, тем меньше расход теплоты и топлива, но тем больше поверхность нагрева и стоимость подогревателя.

 
 

а)
В ПВД применяют стальные трубки; в ПНД в определенных условиях продолжают применять латунные трубки. Медь из латуни вымывается конденсатом и переносится в котел и турбину. Надежность и экономичность энергоблока при этом снижаются. Применение ПНД с трубками из нержавеющей стали удорожает установку. В настоящее время в энергоблоках применяют один или два первых по ходу воды ПНД смешивающего типа. Между двумя смешивающими ПНД устанавливают перекачивающий насос (рис. 7.6 а) или первый ПНД размещают выше второго для перелива воды во второй ПНД без насоса (гравитационная схема) (рис. 7.6, б).

б)
Рис. 7.6. Схемы включения смешивающих подогревателей:

а – с перекачивающим насосом; б – гравитационная схема;

СП – сальниковый подогреватель

 
 

Рис. 7.7. Бездеаэраторная схема включения регенеративных подогревателей: БОУ – блочная обессоливающая установка

Один из смешивающих подогревателей с давлением пара 0,6 – 1,0 МПа используют для удаления газов из воды в качестве деаэратора.

Распространение получил нейтрально-кислородный водный режим энергоблоков с вводом кислорода в тракт конденсата (перед конденсатным насосом). Образующаяся при этом на внутренней поверхности трубок оксидная пленка предохраняет металл от дальнейшей коррозии. Исключая при таком режиме деаэратор, получают бездеаэраторную схему (рис. 7.7).

Расходы пара на подогреватели определяют из уравнений их теплового и материального баланса. Уравнения теплового баланса составляют по следующим принципам:

§ смешивающие подогреватели – сумма теплот, подводимых к подогревателю, равна сумме теплот, отводимых из подогревателя;

§ поверхностные подогреватели – теплота, отдаваемая греющими потоками, равна теплоте, получаемой подогреваемой водой (основным конденсатом).

Расход пара на подогреватели в тепловой схеме целесообразно определять, начиная с подогревателей высокого давления. Пропуск воды через ПВД известен. Для конденсационной электростанции принимаем .

 
 

а) б) в)

 

Рис. 7.8. Схемы включения подогревателей:

а – две ступени включения смешивающих подогревателей;

б – два смежных поверхностных подогревателя с каскадным сливом дренажей;

в – то же с охладителями дренажа и смесителем между подогревателями

 

Для смешивающих подогревателей П1 и П2 имеем (рис. 7.8 а):

§ для П1:

 

,

отсюда

,

 

где t – подогрев воды в подогревателе; q – количество теплоты, отданное паром в подогревателе;

§ для П2:

 

,

отсюда

 

.

 

Важной величиной в основном выражении для кпд турбоустановки является – количество пара, направляемого в конденсатор

 

.

 

Схема с поверхностными подогревателями усложняется наличием дополнительных линий дренажа (конденсата греющего пара). Простейшим является отвод (слив) дренажа из данного подогревателя в соседний, более низкого давления (рис. 7.8, б).

Недостаток схемы – вытеснение греющего пара подогревателя № 2 из отбора с более низким давлением дренажом из подогревателя № 1 и ухудшение тепловой экономичности турбоустановки.

Доли отборов пара на подогреватели П1 и П2 определяются из уравнений:

§ для П1:

 

,

 

откуда определяем ;

 

§ для П2:

,

где – энтальпия воды после смесителя основного конденсата турбины и дренажей из П1 и П2.

Следует написать уравнение смешения в смесителе и затем исключить из двух уравнений:

,

 

но , поэтому

 

.

 

Подставляя в уравнение для П2 вместо его выражение в функции и , определяем . Зная и , определяем , а затем подогрев воды в смесителе:

 

.

 

Схему с поверхностными подогревателями и каскадным сливом дренажа совершенствуют, включая у подогревателя № 1 охладитель дренажа. Вследствие охлаждения конденсата греющего пара водой, входящей в теплообменник, уменьшается расход пара на этот подогреватель и увеличивается расход на соседний подогреватель, в который сливается дренаж. В результате возрастает работа пара отборов и уменьшается потеря теплоты в конденсаторе турбины.

Суммарный дренаж из подогревателя № 2 перекачивают насосом в смеситель на линии главного конденсата между подогревателями П1 и П2 (рис. 7.8, в).

Доли отборов определяют из следующих уравнений:

§ для П1:

 

,

 

где .

Энтальпию охлажденного дренажа выбирают, принимая его температуру на 5 –10 оС выше температуры воды на входе в охладитель дренажа;

§ для смесителя:

 

,

 

где или ;

 

§ для П2:

 

.

 

Подставляя выражение в уравнение для П1, получаем соотношение между и . Решая его совместно с уравнением для П2, определяем и , а затем и .

При каскадном сливе дренажа греющими для данного подогревателя являются два потока: пар из отбора турбины и дренаж, сливаемый в данный подогреватель. Важно отметить, что у подогревателя с откачкой воды насосом в линию основного конденсата (после подогревателя) охладитель дренажа применять не следует.

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1 Раздел I. ПРОБЛЕМЫ РАЗВИТИЯ ЭНЕРГЕТИКИ

Раздел I ПРОБЛЕМЫ РАЗВИТИЯ ЭНЕРГЕТИКИ... Энергетика и энергетические ресурсы Отрасль народного хозяйства занятая превращением энергии из видов в которых она широко встречается в природе в виды в которых она больше всего...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Типы подогревателей и схемы их включения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Возобновляемые и невозобновляемые источники энергии
Естественные (природные) источники, из которых энергия черпается для приготовления ее в нужных видах для различных технологических процессов, называются энергетическими ресурсами. Р

России до 2050 г.
Годы Электропотребление, млрд. кВт

Основные месторождения ископаемого твердого топлива РФ
Согласно имеющимся прогнозам в XXI веке ископаемые виды топлива – нефть, уголь и газ - останутся основными источниками первичной энергии и будут обеспечивать ~ 80 % мирового энергопотребления. Угол

По состоянию на начало 2001 г.
  Регионы мира Запасы Добыча Потребление Страны – члены ОЭСР Северная Америка Европа Тих

Технические характеристики топлив
1.2.1. Технические характеристики мазута   Вязкость. Кактехническая характеристика вязкость является важнейшим показ

Технические характеристики газа
Основными техническими характеристиками природного газа является плотность, взрываемость и токсичность. Плотность. Почти все виды газового топлива легче воздуха, поэтому при утечке

Характеристики твердого топлива
Угли даже одного месторождения сильно различаются друг от друга по своим свойствам; от этих свойств зависит конструкция топки котла, в которой происходит сжигание топлива и конструкция котла.

Характеристика газообразных выбросов электростанций
В газообразных выбросах электростанций безопасными составляющими для человека являются водяные пары, углекислый газ, кислород и азот. Остальные ингредиенты в той или иной мере являются вредными.

Основные потребители воды и характеристика сточных вод
Для конденсации 1 кг пара в конденсаторе необходимо в среднем 60-100 кг воды. Кроме конденсации пара в конденсаторах часть воды используется для охлаждения масла и газа в масло- и газоохладителях т

Энергосберегающие технологии в энергетике. Энергоаудит
Несмотря на обострение энергетического кризиса, эффективность использования энергоресурсов в РФ остается очень низкой. Из каждой добытой в настоящее время в России тонны нефти и угля в полезную эне

Электрическое потребление
Особенностью работы электрических станций является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, почти полностью соответствует потребляемой энергии.

Тепловое потребление
Важная особенность ТЭС – возможность использования отработавшей теплоты для нужд промышленности и быта. Тепловая энергия направляется теплоэлектроцентралями (ТЭЦ) двум основным видам потре

С паровыми котлами
  Принципиальная тепловая схема (ПТС) котельной с паровыми котлами для потребителей пара и горячей воды показана на рис. 3.1. Паровые котельные чаще всего предназначены для о

С водогрейными котлами для закрытых систем теплоснабжения
ПТС котельных с водогрейными котлами для закрытых систем теплоснабжения показана на рис. 3.2. Вода из обратной линии тепловых сетей с небольшим напором 20 – 40 м. вод. ст. поступает к сете

Для открытых систем теплоснабжения с водогрейным котлами
В открытых системах теплоснабжения подготовленная в котельной вода служит не только теплоносителем, но и поступает на нужды городского водоснабжения. Разбор воды производится непосредственно из тру

С паровыми и водогрейными котлами
Расчеты удельных показателей котельных с паровыми и водогрейными котлами в сопоставлении с удельными показателями котельных с паровыми котлами и подогревателями сетевой воды показывают, что в котла

Агрегатами
Районные отопительные котельные, оборудованные крупными водогрейными котлами, требуют установки и паровых котлов для обеспечения потребности в паре для разогрева мазута, деаэрации воды, обдувки пов

Электростанции
Технологическая схема тепловой электростанции характеризует состав ее теплового хозяйства, взаимную связь частей, общую последовательность технологических процессов (рис. 3.5). В состав эл

Технологическая структура электростанций
Технологическая структура – тип основной технологической схемы. В этом отношении ТЭС делят на блочные и неблочные. Современные конденсационные электростанции, применяющие, как правило, промежуточны

Конденсационной электростанции и ее установок
Основным показателем энергетической эффективности КЭС является кпд по отпуску электрической энергии, который называется абсолютным электрическим кпд. Коэффициент полезного действия электро

Без промежуточного перегрева пара
Расход пара на конденсационный турбоагрегат D0, кг/с, определяется из условия энергетического баланса (рис. 5.1.2):  

Расходы пара, тепла, топлива и коэффициенты полезного действия конденсационной электростанции с промежуточным перегревом пара
Промежуточный перегрев пара применяется на паротурбинных электростанциях с целью повышения их кпд, а также для ограничения конечной влажности пара в турбине при высоком его начальном давлении, когд

ЛЕКЦИЯ 13
5.2. Тепловая экономичность и энергетические показатели теплоэлектроцентралей (ТЭЦ)   Для снабжен

Турбины с противодавлением
Пропуск пара через турбину с противодавлением определяется размером теплового внешнего потребителя, то есть (рис. 5

Турбины с конденсацией и регулируемыми отборами пара
    Рис. 5.2

Первое слагаемое в формуле (5.2.9)
  ,  

Энергетические показатели ТЭЦ
  Коэффициент полезного действия теплофикационной турбоустановки по производству электрической энергии за единицу времени (1 сек.)  

ПЕРЕГРЕВ ПАРА
  Под начальными параметрами пара понимают температуру и давление пара перед турбиной и соответствующие им параметры пара на выходе из паровых котлов. Повышение начальных пар

Параметров пара
    Зависимость

Промежуточный перегрев пара на ТЭЦ
Применение промежуточного перегрева пара на ТЭЦ имеет свои особенности. Промежуточный перегрев как средство ограничения конечной влажности пара для теплофикационных турбин докритического н

Экономичность ТЭС
При одних и тех же значениях начальных параметров пара Т0 и Р0 снижение конечного давления Рк ведет к увеличению термического КПД цикла

Способы промежуточного перегрева пара
Известны три способа промежуточного перегрева пара: газовый, паровой и с помощью промежуточного теплоносителя. Газовый промежуточный перегрев производится в промежуточном пароперегревателе

Питательной воды и его энергетическая эффективность
Регенеративный подогрев основного конденсата и питательной воды котлов осуществляется паром, отработавшим в турбине. Греющий пар, совершив работу в турбине, направляется в регенеративные подогреват

Расход пара на турбину с регенеративными отборами
Расход пара D0 на турбину с отбором Dr определяется по формуле  

Подогрева питательной воды на КЭС
При проектировании энергоблока определяют и выбирают следующие параметры и характеристики регенеративного подогрева воды: конечную температуру подогрева питательной воды

Распределение регенеративного подогрева воды и отборов в турбине при промежуточном перегреве пара
Применение регенеративного подогрева воды при промежуточном перегреве пара имеет свои особенности (рис. 7.9).    

Регенеративного подогрева воды
Экономичность регенеративного подогрева воды при использовании перегретого пара отборов турбины, в особенности при промежуточном перегреве, можно повысить охлаждением греющего пара питательной водо

Регенеративный подогрев воды на теплоэлектроцентралях (ТЭЦ). Распределение регенеративного подогрева воды на ТЭЦ
Применение регенеративного подогрева воды на ТЭЦ способствует экономии тепла, повышая выработку электроэнергии на тепловом потреблении и уменьшая потери тепла в конденсаторе турбин. Теплофикационны

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги