рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Эффективность и область применения ГТУ.

Эффективность и область применения ГТУ. - раздел Энергетика, ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ Подготовка бакалавров: Направление – “Теплоэнергетика и теплотехника” Профиль – “Энергетика теплотехнологий” Области Применения Газотурбинных Установок Практически Не Ограничены: Нефтега...

Области применения газотурбинных установок практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования, силовые установки машин. Положительным моментом использования ГТУ в муниципальных образованиях является то, что содержание вредных выбросов в выхлопных газах NOх и CO находится на безопасном уровне, что позволяет устанавливать и эксплуатировать данное оборудование в черте города, непосредственно в жилом районе [5].

Газотурбинные установки на электростанциях, как основной тип двигателя для привода электрогенераторов, использовались первоначально главным образом в тех районах, где имеется природный газ, а так же, учитывая их возможности к быстрому пуску, для покрытия пиковых нагрузок, возникающих в энергосистемах в относительно кратковременные периоды наибольшего потребления энергии. Предпринимались попытки применения газотурбинных агрегатов в новых технологических процессах – с использованием в качестве топлива для ГТУ продуктов подземной газификации угля. С этой целью на ЛМЗ были изготовлены два турбоагрегата мощностью по 12 МВт, смонтированы на Шацкой электростанции (Рязанская область) и запущены в эксплуатацию.

Однако работы, проводившиеся в течение ряда лет, показали, что путь использования в газотурбинных агрегатах низкокалорийных продуктов подземной газификации в энергетике неперспективен с экономической точки зрения. Паротурбинные установки с обычной схемой использования топлива экономичнее и надежнее. Поэтому в 1961 г. работы по освоению сжигания продуктов перегонки твердого топлива в газотурбинных агрегатах были прекращены, а Шацкая электростанция остановлена [5].

Еще одно из направлений по применению газотурбинных установок для выработки электроэнергии – использование авиационных газотурбинных агрегатов. Эти агрегаты имеют высокое техническое совершенство, компактны, надежны, не требуют охлаждающей воды, быстро запускаются в работу (за 1..3 минуты). При минимальных работах по реконструкции эти агрегаты могут быть использованы для привода электрогенераторов как для передвижных автоматизированных энергоустановок небольшой мощности (1..3 МВт), так и для более мощных, в том числе пиковых. Транспортабельные установки монтируются на трейлерах и могут быть доставлены практически в любой район для обслуживания строительных объектов и снятия пиковых нагрузок.

Отдельное внимание стоит уделить возможности надстройки существующих котельных станций теплофикационных систем газотурбинными установками, что позволяет обеспечить надежное тепло- и электроснабжение собственных нужд и снизить удельный расход топлива. Применение ГТУ в мини-ТЭС экономически оправдано в комплексе с утилизационными контурами, позволяющими использовать теплоту отводимых газов для нужд теплофикации. Это обусловлено достаточно низким электрическим кпд газовой турбины 22…37%. При этом соотношение вырабатываемой электрической энергии и тепловой составляет 1:1,5 до 2,5 [5]. В зависимости от потребностей, ГТУ может комплектоваться паровыми или водогрейными котлами-утилизаторами, что позволяет получать либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду с температурой выше 140 0С. При комплексной выработке энергии общий кпд станции возрастает до 90%. [5]. Максимальная эффективность использования ГТУ обеспечивается при длительной работе с максимальной электрической нагрузкой. В диапазоне мощностей порядка 10 МВт существует возможность использования комбинированного цикла газовых и паровых турбин. Это позволяет существенно повысить эффективность использования станции, увеличивая электрический КПД до 57..59 % [5].

ГТУ предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Строительство таких электростанций в отдалённых (особенно северных) районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяжённых линий электропередач, а для центральных районов – повысить надежность электрического и теплового снабжения как отдельных предприятий, так и территорий в целом.

За основу строительства электростанций на базе ГТУ взята концепция блочно-модульного построения. Такие электростанции состоят из максимально унифицированных отсеков и модулей, что позволяет в сжатые сроки создавать новые модификации агрегатов, а также совершенствовать, модернизировать устаревшие объекты с минимальными затратами. Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Они монтируются с применением универсальных грузоподъемных монтажных средств. Размеры блоков не превышают транспортные железнодорожные габариты [5].

Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, поставляемого вместе с комплектом оборудования энергоблока. Во время эксплуатации электростанции ее работу обеспечивают три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов энергоблока предусмотрена надежная система защиты.

Как известно, газотурбинные установки помимо энергетики широко применяются в авиации, в качестве корабельных силовых установок, силовой установки в локомотивах и в танкостроении. Это объясняется следующими качествами газотурбинной установки по сравнению с поршневыми машинами:

§ Очень высокое отношение мощности к весу,

§ Возможность осуществления цикла с полным расширением газа и, тем самым, с большим термическим кпд;

§ Отсутствие возвратно-поступательного движения, что обеспечивает намного меньшую вибрацию; меньшее количество движущихся частей;

§ Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями;

§ Низкие требования к качеству топлива – газовые турбины потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

Главным преимуществом ГТУ, является ее компактность [5]. Действительно, прежде всего, в ГТУ отсутствует паровой котел, — сооружение, имеющее большие, если не огромные габариты и требующее для установки отдельного помещения или системы помещений. Связано это обстоятельство, прежде всего с высоким давлением в камере сгорания ГТУ (1,2—2 МПа); в паровом котле горение происходит при атмосферном давлении и соответственно объем образующихся горячих газов оказывается в 12—20 раз больше. Далее, в ГТУ процесс расширения газов происходит в газовой турбине, состоящей всего из 3—5 ступеней, в то время как паровая турбина, имеющая такую же мощность, состоит из 3—4 цилиндров, заключающих 25—30 ступеней (раздел 3). Даже с учетом размеров и камеры сгорания, и воздушного компрессора газовая турбина мощностью 150 МВт имеет длину 8—12 м, а длина паровой турбины такой же мощности при трехцилиндровом исполнении в 1,5 раза больше (рис. 3.18). При этом для функционирования паровой турбины кроме котла необходимо предусмотреть установку конденсатора с циркуляционными и конденсатными насосами, систему регенерации из 7—9 подогревателей, питательные турбонасосы (от одного до трех), деаэратор. Как следствие, ГТУ может быть установлена на бетонное основание на нулевой отметке машинного зала, а ПТУ требует рамного фундамента высотой 9—16 м с размещением паровой турбины на верхней фундаментной плите и вспомогательного оборудования — в конденсационном помещении.

Компактность ГТУ позволяет осуществить ее сборку на турбинном заводе, доставить в машинный зал железнодорожным или автодорожным транспортом для установки на простом фундаменте. Так, в частности, транспортируется ГТУ с встроенными камерами сгорания. При транспортировке ГТУ с выносными камерами последние транспортируются отдельно, но легко и быстро присоединяются с помощью фланцев к модулю компрессор-газовая турбина. Паровая турбина поставляется многочисленными узлами и деталями, монтаж как ее самой, так и многочисленного вспомогательного оборудования и связей между ними занимает в несколько раз больше времени.

ГТУ не требует охлаждающей воды. Как следствие, в ГТУ отсутствует конденсатор и система технического водоснабжения с насосной установкой и градирней (при оборотном водоснабжении). В результате все это приводит к тому, что стоимость 1 кВт установленной мощности газотурбинной электростанции значительно меньше. При этом стоимость собственно ГТУ (компрессор + камера сгорания + газовая турбина) из-за ее сложности оказывается в 3..4 раза больше, чем стоимость паровой турбины такой же мощности [5].

Важным преимуществом ГТУ является ее высокая маневренность, определяемая малым уровнем давления (по сравнению с давлением в паровой турбине) и, следовательно, легким прогревом и охлаждением без возникновения опасных температурных напряжений и деформаций.

Однако, газотурбинная установка обладает рядом недостатков:

§ Высокая стоимость установки, поскольку материалы, применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции изготовления деталей также более сложные.

§ Необходимость использования газа высокого давления, что обуславливает необходимость применения компрессоров с дополнительным расходом энергии и существенным снижением общей эффективности системы.

· Существенным недостатком ГТУ является меньшая экономичность, чем у паросиловой установки. Средний кпд достаточно проработанных ГТУ составляет 37..38 %, а паротурбинных энергоблоков — 42..43 %. “Потолком” для мощных энергетических ГТУ, как он видится в настоящее время, является кпд на уровне 41—42 %, (а может быть и выше с учетом больших резервов повышения начальной температуры). Меньшая экономичность ГТУ связана с высокой температурой отработанных газов, уходящих в окружающую среду. Это обстоятельство требует использование агрегатов вторичного использования теплоты, что существенно удорожает ГТУ в целом [5].

Другим недостатком ГТУ является невозможность использования в них низкосортных топлив, по крайней мере, в настоящее время. Она может хорошо работать только на газе или на хорошем жидком топливе, например, дизельном. Паросиловые энергоблоки могут работать на любом топливе, включая самые некачественные – каменные угли и торф.

Низкая начальная стоимость ТЭС с ГТУ и одновременно сравнительно низкая экономичность и высокая стоимость используемого топлива определяют основную область индивидуального использования ГТУ: в энергосистемах их следует применять как пиковые или резервные источники мощности, работающие несколько часов в сутки. Вместе с тем ситуация кардинально изменяется при использовании теплоты уходящих газов ГТУ в теплофикационных установках или в комбинированном (парогазовом) цикле.

 

– Конец работы –

Эта тема принадлежит разделу:

ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ Подготовка бакалавров: Направление – “Теплоэнергетика и теплотехника” Профиль – “Энергетика теплотехнологий”

Подготовка бакалавров Направление Теплоэнергетика и теплотехника... Профиль Энергетика теплотехнологий...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Эффективность и область применения ГТУ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Поршневые паровые машины
  Силу пара знали ещё в древности. Так Герон Александрийский более 2-х тысяч лет назад изготавливал не только забавные механизмы, приводимые в действие паром воды, но

Атмосферные” паровые машины
  Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на произ

Паровые машины высокого давления
  Машина Дж. Уатта. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, давшая новый импульс в раз

Паровые машины двойного действия.
Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойного действия. В машинах одиночного действия поршень перемещался в одну сторону силой расширяющегося пара

Множественное расширение пара. Компаунд-машины
  В процессе расширения пара в цилиндре машины высокого давления давление пара падает пропорционально его расширению. Для реализации полного расширения пара высокого давления требуютс

Двигатели внутреннего сгорания
  Принцип получения механической энергии в поршневых газовых двигателях состоит в расширении газообразного рабочего тела в цилиндре под поршнем, который соединён, как и в паровой маши

Двигатель на светильном газе
  В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой п

Двигатель на бензине
  Поиски нового горючего для двигателя внутреннего сгорания из-за недостатков светильного газа не прекращались. Некоторые изобретатели пытались применить в качестве газа пары жидкого

Дизельные двигатели
  Дизельный двигатель – это поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого жидкого топлива при его взаимодействии с разогретым сжатием

Воздействие потока рабочего тела на лопатки рабочего колеса турбины
Принцип действия турбины рассмотрим на примере её колеса (схема колеса турбины показана на рис. 3.8). При истечении газа через спе

Сопловые и рабочие решётки ступени турбины
  Профили лопаток количеством z, образуя решётки, располагаются на диске с корневым диаметром dк друг относительно друга на расстоянии шага D = π

Паровые турбины
  Современная энергетика основана на централизованном производстве электроэнергии. Генераторы тока, установленные на электростанциях, в большинстве случаев приводятся в действие паров

Первые паровые турбины
  К концу XIX века промышленная революция достигла поворотной точки своего развития. За полтора века до этого паровые двигатели значительно усовершенствовались, они могли работать от

Конденсационные паротурбинные установки.
Схема работы конденсационной турбины показана на рис. 4.1. Свежий пар вырабатывается в котельном агрегате 1, там же перегревается и по паропроводу 2 подаётся на турбину 3. В ту

Краткая историческая справка.
Разработка первых проектов мирного использования атомной энергии для производства электроэнергии в СССР началась в 1948 г. по предложению И.В. Курчатова. В мае 1950 г. близ посёлка Обнинское Калужс

Элементы конструкции паровых турбин
  Общий вид паровой турбины показан на рис. 4.14. Здесь 1 – узел разгрузки осевого усилия на вал турбины, 2 – цилиндр высокого давления, 3 – паропровод высокого д

Газовые турбины в теплоэнергетике
  Наряду с развитием паротурбинных установок и усовершенствованиями двигателей внутреннего сгорания (ДВС) к началу XX века возрос интерес к проблеме газотурбостроения. ГТУ принципиаль

Камеры сгорания газотурбинных установок
  Камерой сгорания называется устройство, обеспечивающее повышение теплосодержания газа в цикле ГТУ за счёт химических реакций окисления углеводородов топлива и подготовку продуктов с

Паровые котлы энергетических систем
  Рассмотрим особенности устройства, энергетические характеристики и принципы расчёта параметров паровых котлов, предназначенных для производства водяного пара как рабочего тела парот

Котёл-генератор насыщенного пара
  Простейший водотрубный котел для производства насыщенного пара состоит из пучков труб, присоединенных своими концами к барабану (или барабанам) умеренного диаметра. Вся система монт

Котёл-генератор перегретого пара
  В настоящее время большинство паротурбинных установок работают не с насыщенным, а с перегретым паром с предельно высокими температурой и давлением. Такие параметры пара обеспечивают

Теплообменники энергетических установок
  Теплообменники энергетических установок (ТОА) используются в целях осуществления различных тепловых процессов (нагревание, охлаждение и т.п.), направленных как на повышение эффектив

Кожухотрубный теплообменный аппарат
  Схема кожухотрубного ТОА показана на рис. 5.5. Здесь 1 – параллельные трубы, собранные в пучок и своими концами вмонтированные в трубные доски 2. Пучок труб охватывает

Конденсаторы пара
  Конденсаторы пара являются одной из определяющих составляющих различных энергетических систем, таких как переработка нефти,

Особенности ПВРД для сверхзвуковых полётов ЛА.
Принципиальная схема ПВРД, предназначенного для сверхзвуковых полётов ЛА, показана на рис. 6.5. Двигатель разделён характерными сечениями на

Компрессорные воздушно-реактивные двигатели
  Как показал анализ ПВРД, эффективное использование двигателей этого типа возможно лишь при больших скоростях полёта, обеспечивающих достаточно высокую степень повышения давления в д

Турбокомпрессорный (турбореактивный) двигатель.
  Турбокомпрессорный воздушно-реактивный двигатель (ТВРД) в настоящее время является основным типом реактивного двигателя, используемого в авиации.

Турбовинтовой двигатель.
  По своему устройству и рабочему процессу турбовинтовой двигатель (ТВД) во многом напоминает ТВРД (схема ТВД приведена на рис. 6.13). Здесь 1 – воздушный винт (пропеллер),

Двухконтурный (вентиляторный) воздушно-реактивный двигатель.
  Схема двухконтурного двигателя показана на рис. 6.14. Набегающий поток атмосферного воздуха подхватывается уже не винтом, а

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги