рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Обобщенная линеаризованная система УП-Д

Обобщенная линеаризованная система УП-Д - раздел Энергетика, Теория электропривода   Выполненный Выше Анализ Особенностей Электропривода По Систем...

 

Выполненный выше анализ особенностей электропривода по системам ГД, ТП-Д, ПЧ-АД, а также структурные схемы этих систем, в принципе аналогичны в пределах принятых допущений. Это дает основание для обобщений и обобщенного изучения свойств регулируемого электропривода.

Исходя из этой аналогии при необходимости анализа динамики электропривода по системе УП-Д с учетом упругих связей механическую часть электропривода следует представлять двухмассовой расчетной схемой. Движение такой обобщенной системы описывается следующей системой уравнений

или

,

; , где

;

Для системы ГД Тпг ; Тэя ;

Для системы ТП – Д Тптп ; Тэя ; для характеристик в зоне непрерывных токов.

Для системы ПЧ – АД Тпº0 ; ;

Структурная схема, соответствующая этим уравнениям, имеет вид:


Для анализа общих свойств электропривода при регулировании тока, момента, скорости и положения может использоваться обобщенная структура электропривода по системе УП-Д при жестких механических связях, т.е. при С12= ¥ , которая имеет следующий вид:

 

 

 
 

Регулирование момента (тока) электропривода

Задачи регулирования момента (тока) электропривода

Необходимость регулирования момента (тока) диктуется техническими и технологическими требованиями. Действительно, в переходных процессах пуска и торможения, необходимо ограничивать ток и момент двигателя, чтобы они не превышали допустимых значений. Для механизмов, рабочие органы которых часто работают на упор вплоть до их стопорения, возникает необходимость не просто ограничения момента (тока), но и его непрерывного регулирования в целях ограничения динамических ударных нагрузок механического оборудования.

При работе различных промышленных роботов и манипуляторов в ряде случаев требуется точное дозирование усилий на рабочем органе, что также обеспечивается регулированием момента.

Возможны следующие способы регулирования момента:

1. Реостатное регулирование

2. Изменением подводимого напряжения (в АД)

3. Частотное регулирование

4. Изменением магнитного потока (вслучае ДНВ)

Реостатное регулирование момента (тока) двигателей

 

Введение добавочного сопротивления в цепь якоря двигателя постоянного тока или в цепь ротора АД приводит при данной скорости к уменьшению тока и развиваемого двигателем момента. Уменьшается жесткость механической характеристики. Если же требуется поддержание момента или тока неизменными в широких пределах изменения скорости, необходимо сопротивление силовой цепи двигателя изменять в линейной зависимости от скорости, что вытекает из следующего. Поскольку жесткость искусственной характеристики

,

 

а момент двигателя, выраженый через эту жесткость , то для получения М=const необходимо чтобы , т.е. сопротивление следует изменять линейно в зависимости от w.

Практически обычно требуется при широких пределах изменения скорости (пуск, реверс) поддерживать изменение момента и тока в заданных пределах от M=Ммакс до Ммин (I=Iмакс до I=Iмин). Для выполнения этого условия требуется ступенчатое или плавное изменение Rдаб по мере изменения скорости.

Точность регулирования тока и момента определяется при заданных пределах изменения скорости соотношениями

или

Здесь Iмаксмакс) и Iминмин) – заданные допустимые значения (см. рис.).

При этих условиях относительная точность регулирования момента при увеличении Rдоб остается неизменной, а абсолютные ошибки уменьшаются. Требуемая точность регулирования М и I при заданных пределах изменения w определяет число ступеней регулировочного реостата.

Диапазон реостатного регулирования М и I ограничен сверху перегрузочной способностью двигателя (для двигателей постоянного тока по условиям коммутации), а пределы изменения w, в которых можно получить заданную точность регулирования, уменьшаются по мере уменьшения Rдаб .

Плавность реостатного регулирования М и I в разомкнутой системе невелика и зависит от числа ступеней регулировочного реостата. Увеличение числа ступеней связано с увеличением габаритов коммутирующего устройства (контакторной панели). Тем не менее, в ряде случаев для получения требуемой точности и плавности регулирования М и I в процессах пуска и торможения предусматривается значительное число ступеней реостата, увеличение габаритов и стоимости станции управления. Это увеличение окупается простотой и надежностью данного способа регулирования тока и момента.

Переключение ступеней осуществляется вручную оператором, либо автоматически в функции времени. Автоматическое релейное регулирование момента по отклонению осуществляется в функции тока двигателя, либо в функции его скорости. Релейные системы реостатного регулирования при высокой чувствительности релейного элемента способны обеспечить высокую точность и плавность регулирования тока и момента, о чем говорится ниже.

 

Релейное автоматическое регулирование тока и момента АД изменением импульсным методом сопротивления в цепи выпрямленного тока ротора

 

Принципиальная схема регулирования изображена на рис. При периодическом шунтировании добавочного сопротивления Rдоб, включенного в цепь
выпрямленного тока ротора, тиристорным ключом ТК , достигается эффект плавного изменения активного сопротивления в цепи выпрямленного тока ротора от 0 до полной величины Rдоб .

Выходное напряжение Uу релейного элемента РЭ определяет открытое или закрытое состояние тиристорного ключа ТК. На вход РЭ подается сигнал, пропорциональный разности задающего напряжения Uзт и напряжения обратной связи по току Uо.т. При достаточно большой частоте fк коммутации ТК можно считать, что в цепь выпрямленного тока ротора введено регулируемое “импульсное” добавочное сопротивление Rдоб. имп., величина которого плавно изменяется от 0 до Rдоб. При изменении скважности импульсов от 1 до 0. Здесь tимп – длительность замкнутого состояния ТК, а - период коммутации. Связь Rдоб.имп. с Rдоб. линейна: .

Когда ТК открыт (g=1), Rдоб. шунтировано. В этом случае момент, развиваемый двигателем, определяется его естественной характеристикой. Когда ТК закрыт (g=0), в цепь ротора введено Rдоб., что соответствует работе двигателя на реостатной характеристике. Изменяя соотношение между интервалами времени, в течение которых ТК открыт или закрыт, можно регулировать выпрямленный ток ротора, а следовательно, плавно регулировать развиваемый двигателем момент М. Для получения выражения момента и уравнения механической характеристики двигателя при данном способе регулирования момента, воспользуемся схемой замещения, в которой параметры статора приведены к цепи выпрямленного тока ротора. Здесь


сопротивление, обусловленное коммутацией вентилей выпрямителя В, учитывающее снижение вследствие этого среднего выпрямленного напряжения, а хдв – индуктивное сопротивление двигателя, приведенное к цепи выпрямленного тока;– активное сопротивление двух фаз статора, приведенное к роторной цепи; 2r2 - активное сопротивление двух фаз ротора; m - число пульсаций выпрямленного напряжения ротора.

Если пренебречь временем переключения ТК, то процессы изменения выпрямленного тока ротора при переключении Rдоб описываются для открытого состояния ТК уравнением

или , а при закрытом ТК

или , где

;

Законы изменения токов при принятых допушениях

здесь t1 – время , когда id0=Iнач.з

;

Зависимость id от t для некоторого конкретного значения S и w изображена на рис. Из выражений для Ido и Idз и графика следует, что при увеличении w и уменьшении S ток Id0 уменьшается для значения Iнач.з, частота коммутации ключа ТК становится равной 0, ключ остается в открытом состоянии, и двигатель работает на естественной характеристике 1 (см.рис.). При уменьшении w и возрастании S Idз увеличивается до Iнач.щ , возрастает до ¥ время закрытого состояния ТК Tk-t1 , и двигатель работает на реостатной характеристике 2.

Пренебрегая пульсациями выпрямленного тока можно принять Id=Id.cp . Тогда выпрямленное напряжение ротора

Электромагнитный момент можно найти через потери в роторной цепи

 

отсюда

 

Отсюда следует, что при Idcp=const момент, развиваемый АД в статическом режиме, остается постоянным. Т.о.,поддерживая постоянным среднее значение выпрямленного тока на различных уровнях, можно регулировать момент M двигателя с высокой точностью. Так, поддерживая выпрямленный ток на уровнях Id1, Id2, Id3 постоянным, можно получить характеристики электропривода, обеспечивающие постоянство момента (прямые 3,4,5; достигается это путем задания Uзт=const ) в пределах изменения w от характеристики 1 до характеристики 2.

Энергетические показатели электропривода с импульсным управлением в цепи выпрямленного тока ротора несколько хуже, чем при обычном реостатном регулировании. Некоторое их ухудшение определяется в основном наличием выпрямителя в цепи ротора. Тем не менее, подобный электропривод, обладая основными регулировочными свойствами асинхронного электропривода при частотном управлении от статического преобразователя частоты – плавностью, быстродействием, большим диапазоном регулирования, отличается от последнего простотой схемного решения.


 

 

– Конец работы –

Эта тема принадлежит разделу:

Теория электропривода

Кафедра микропроцессорных средств автоматизации... Теория электропривода...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Обобщенная линеаризованная система УП-Д

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механика электромеханической системы
Кинематическая схема эл.привода. Силы и моменты, действующие в системе эл.привода.

Mc=M0+(Mсн-M0)(w/wн)х , где
Мс и Мсн статические моменты сопротивления механизма соответственно при скорости w и wн; Мо – момент холостого хода (трения) механизма, не зависящий от с

Уравнение движения и режимы работы
эл.привода как динамической системы.   Механическая часть эл.привода представляет собой систему твердых тел, движущихся с различными скоростями. Уравн

Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.
Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы:

Движение инерционных масс эл.привода
с учетом упругих связей движущихся масс.   С целью выявления влияния упругих связей на характер движения инерционных масс эл.привода, проанализируем п

В уравнении жесткого приведенного механического звена величина
определяет собой суммарную динамическую нагрузку. Знак Мдин. Зависит от знака ускорения. При

Если учесть, что , то поэтому
Если выразить L1, L2, L12 через индуктивные сопротивления

Расчет статических механических характеристик в системе ТП-Д
  Расчет характеристик системы ТП-Д без обратных связей выполняется по уравнению механической характеристики ; где

Законы частотного регулирования
При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных механическ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги