рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Интерференция света.

Интерференция света. - раздел Электротехника, Взаимодействие токов сила взаимодействия, магнитное поле, как реагирует Это Явление Наложения Волн С Образованием Устойчивой Картины Максимумов И Мин...

Это явление наложения волн с образованием устойчивой картины максимумов и минимумов. При интерференции света на экране наблюдается чередование светлых и темных полос, если свет монохроматический (излучаются электромагнитные волны одной длины), или цветных полос, если цвет белый или состоит из волн разной длинны. Необходимым условием наблюдения интерференционной картины является когерентность волн. Два различных источника света не могут быть когерентны. Свет излучается возбужденными атомами, время излучения атома длится ~10-8с, период колебаний, возбуждаемых световой волной ~10-15с. Невозможно согласовать излучение двух атомов одного источника, тем более, невозможно согласовать излучение двух разных источников. Каждый атом излучает короткий цуг волн, который можно представить как сумму монохроматических волн с начальной фазой, определяемой моментом излучения. Поэтому интерферировать могут лишь волны, испускаемые в одном и том же акте излучения. Для получения интерференционной картины видимого света необходимо разделить излучения от одного источника на два потока, эти потоки направить по двум разным траекториям, а затем соединить их в некоторой области пространства. В этом случае в данной точке пространства будут сходиться волны, испущенные одним атомом в одном акте излучения, и разность фаз колебаний, возбуждаемых в этой точке этими волнами, будет определятся только разностью хода волн. Например, луч, падающий непосредственно на экран SA, и луч, отразившийся от зеркала, ОА, будут когерентны. Разность геометрических волн в данном случае является разностью хода волн D=(SO+OA)-SA. Очевидно, что разность хода волн не должна превышать 3 м. Если D>3 м, то в точке A встречаются волны, излученные разными атомами, так как за время 10-8с одним атомом излучается цуг волн длиной l=ct=3 м, где с – скорость света, равная 300000 км/с.

 

сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и тёмных полос вследствие нарушения принципа сложения интенсивностей (см. Интерференция волн). Некоторые явления И. с. наблюдались ещё И. Ньютоном, но не могли быть объяснены с точки зрения его корпускулярной теории (см. Свет, Оптика). Правильное объяснение И. с. как типично волнового явления было дано в начале 19 в. Т. Юнгом и О. Френелем.

И. с. возникает только в случае, если разность фаз постоянна во времени, т. е. волны когерентны (см. Когерентность). До создания лазеров когерентные световые пучки могли быть получены только путём разделения и последующего сведения лучей, исходящих из одного и того же источника света. При этом разность фаз этих колебаний постоянна и определяется только разностью путей, проходимых лучами, или разностью хода D. Существует несколько способов создания когерентных пучков света. Например, в опыте Френеля (рис. 1) два плоских зеркала I и II, образующих двугранный угол, близкий к 180°, дают два мнимых изображения S1 и S2 источника S. На экране AB получается светлая полоса при разности хода D лучей S1M и S2M, равной чётному числу полуволн, и тёмная полоса - при D, равной нечётному числу полуволн. Другой способ был предложен Юнгом (рис. 2). Свет из отверстия S падает на экран AB с двумя отверстиями (или щелями) S1 и S2. И. с. наблюдается на экране CD. Расстояние между соседними светлыми или тёмными интерференционными полосами Dх " l/a, где a - угол S1MS2, под которым сходятся интерферирующие лучи. В этих опытах И. с. наблюдается только при сложении волн, испущенных из одной и той же точки источника. Интерференционные полосы, соответствующие разным точкам источника, сдвинуты относительно друг друга, и при наложении интерференционные картины смазываются. Предельный размер источника, ещё дающего чёткую интерференционную картину, определяется соотношением d = l/b, где b - угол, под которым расходятся лучи из источника (например, ÐS1SS2 на рис. 2).

Это ограничение не имеет места в случае И. с., отражённого от двух поверхностей плоской или слабоклиновидной прозрачной пластинки (рис. 3). При этом между отражёнными лучами возникает разность хода D = 2hn cos i"¢ + l/2, где h - толщина пластинки, n - её показатель преломления, i¢ - угол преломления. Добавочная разность хода l/2 возникает из-за различия сдвига фазы при отражении от верхней и нижней поверхностей пластинки. В строго плоскопараллельных пластинках (с точностью до долей l) одинаковую разность хода будут иметь лучи, падающие на пластинку под одним и тем же углом i, а интерференционные полосы в этом случае называются полосами равного наклона. Они локализованы в бесконечности, поэтому их можно наблюдать в главной фокальной плоскости линзы. В тонких пластинках переменной толщины линии максимумов и минимумов проходят по точкам, соответствующим равной толщине пластинки, и называются полосами равной толщины. Они локализованы в плоскости пластинки. При этом данная интерференционная полоса в монохроматическом свете вычерчивает линию, соответствующую одной и той же толщине пластинки (рис. 4). Если свет не монохроматический, происходит наложение описанных картин для различных длин волн (между собой не интерферирующих); причём положения максимумов и минимумов смещены, поэтому в случае тонкой пластинки наблюдатель видит последовательность цветных полос. Этим явлением И. с. в тонких плёнках объясняются радужная окраска пятен масла или нефти на воде, цвета побежалости на закалённых металлах и др. И. с. в тонких плёнках играет большую роль при просветлении оптики, в интерференциальных светофильтрах, в интерференциальной микроскопии и др. И. с. в тонких плёнках изучается в оптике тонких слоев.

Возможность наблюдения И. с. зависит от степени монохроматичности света. В белом свете можно наблюдать только несколько интерференционных полос вблизи D = 0, которые в этом случае окрашены, потому что положение максимумов и минимумов зависит от длины волны. Если из источника света выделена одна узкая спектральная линия, максимальная разность хода Dmax может достигать нескольких десятков см. Чёткие интерференционные полосы ещё можно наблюдать при Dmax " l2/Dl, где Dl - ширина спектра. Dmax можно связать со временем t, в течение которого фаза волны не сбивается, т. е. излучается волна в виде отрезка синусоиды ("цуг волн"). При этом Dmax оказывается равной длине цуга: Dmax = l2/Dl = ct (c - скорость света), что поясняет невозможность И. с. при D > Dmax, так как соответствующие цуги в двух интерферирующих пучках перестают перекрываться друг другом.

Ограничения размеров источника в приведённых выше опытах снимаются, если источником света служит излучение лазера, которое обладает пространственной когерентностью, и И. с. может наблюдаться при сложении волн, испускаемых разными точками источника. Высокая монохроматичность лазерного излучения позволяет наблюдать И. с. при огромной разности хода.

При очень малых интенсивностях света, когда при помощи чувствительных приёмников регистрируются отдельные фотоны, И. с. проявляется как статистическое явление. Среднее число квантов, попавших на тот или другой участок экрана в течение определённого времени, даёт такое же распределение интенсивности, что и при обычном способе наблюдения. Это находится в полном соответствии с квантовой теорией, согласно которой И. с. происходит не в результате сложения разных фотонов, а в результате "интерференции фотона самого с собой".

И. с. имеет самое широкое применение для измерения длины волны излучения, исследования тонкой структуры спектральной линии, определения плотности, показателей преломления и дисперсионных свойств веществ, для измерения углов, линейных размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. На использовании И. с. основано действие интерферометров и интерференционных спектроскопов; метод голографии также основан на И. с.

Важный случай И. с. - интерференция поляризованных лучей (см. Поляризация света). В общем случае, когда складываются две различно поляризованные когерентные световые волны, происходит векторное сложение их амплитуд, что приводит к эллиптической поляризации. Это явление наблюдается, например, при прохождении линейно поляризованного света через анизотропные среды. Попадая в такую среду, линейно поляризованный луч разделяется на 2 когерентных, поляризованных во взаимно перпендикулярных плоскостях луча. Вследствие различного состояния поляризации скорость их распространения в этой среде различна и между ними возникает разность фаз D, зависящая от расстояния, пройденного в веществе. Величина D будет определять состояние эллиптической поляризации; в частности, при D, равной целому числу полуволн, поляризация будет линейной.

Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла, в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твёрдых телах, для создания особо узкополосных светофильтров и др.

 

– Конец работы –

Эта тема принадлежит разделу:

Взаимодействие токов сила взаимодействия, магнитное поле, как реагирует

Электрический заряд... Взаимодействие зарядов Закон Кулона... Электрическое поле определение напряженность потенциал рисунок эл поля...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Интерференция света.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формулы по физике
    Электричество и магнетизм.   [В/м] ;

Квантовая физика
; ;

Перечислим свойства зарядов
1. Существуют заряды двух видов; отрицательные и положительные. Разноименные заряды притягиваются, одноименные отталкиваются. Носителем элементарного, т.е. наименьшего, отрицательного заряда являет

Взаимодействие заряженных тел
Электростатика изучает свойства и взаимодействия неподвижных в инерциальной системе отсчета электрически заряженных тел или частиц. Самое простое явление, в котором обнаруживается факт сущ

Закон Кулона
Заряды, распределенные на телах, размеры которых значительно меньше расстояний между ними, можно называть точечными, т. к. в этом случае ни форма, ни размеры тел существенно не влияют на вза

Электрическое поле
Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле. Электрическое поле заряда – это материальный объект, оно непрерывно в пространс

Напряженность электрического поля
Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в

Потенциал.
Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j - это энергетическая характеристика электрического поля, тог

Диэлектрики в электрическом поле
Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов. Если одни конец диэлектрика

Полярные и неполярные диэлектрики
К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кисл

Поляризация неполярных диэлектриков
При отсутствии электрического поля электронное облако расположено симметрично относительно атомного ядра, а в электрическом поле оно изменяет свою форму и центр отрицательно заряженного электронног

Диэлектрическая проницаемость
Диэлектрическая проницаемость вещества – это физическая величина, равная отношению модуля напряженности электрического поля в вакууме к напряженности электрического поля в однородном диэлект

Проводники в электрическом поле
Проводниками называются тела, способные пропускать через себя электрические заряды. Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть

Работа электрического поля при перемещении заряда
На пробный электрический заряд, помещенный в электростатическое поле, действует сила, заставляющая этот заряд перемещаться. Значит, эта сила совершает работу по перемещению заряда. Получим формулу

Разность потенциалов
Физическая величина, равная работе, которую совершат силы поля, перемещая заряд из одной точки поля в другую, называется напряжением между этими точками поля.

Электроемкость, конденсатор
Электроемкость – количественная мера способности проводника удерживать заряд. Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая ин

Конденсаторы.
Если изолированному проводнику сообщить заряд Dq, то его потенциал увеличиться на Dj, причем отношение Dq/Dj остается постоянным: Dq/Dj=С, где С – электрическая емкость проводника,

Электрический ток
Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в г

Сила тока
Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.

Электродвижущая сила
Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток. Во внешней цепи электриче

Сопротивление проводников
Сопротивление является основной электрической характеристикой проводника. Сопротивление проводника можно определить из закона Ома:

Зависимость сопротивления проводника от температуры.
Если пропустить ток от аккумулятора через стальную спираль, то амперметр покажет уменьшение силы тока. Это означает, что с сопротивлением температуры сопротивление проводника меняется. Есл

Сверхпроводимость
В 1911 г. нидерландский ученый Камерлинг-Оннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. Явление уменьшения удельного сопротивле

Последовательное и параллельное соединение проводников
Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно. При последовательном соединенииэлектрическая цепь не имеет разветвле

Закон Ома для полной цепи
Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического тока в замкнутой

Правило Кирхгофа.
При последовательном соединении нескольких источников тока полная эдс батареи равна алгебраической сумме эдс всех источников, а суммарное сопротивление равно сумме сопротивлений. При параллельном п

Мощность тока
Это работа, совершаемая за единицу времени и равная P=A/t=IU=I2R=U2/R. Полная мощность P0, развиваемая источником, идет на выделение тепла во внешнем и внутреннем с

Работа и мощность тока
Работу сил электрического поля, создающего электрический ток, называют работой тока. Работа сил электрического поля или работа тока на участке цепи с электрическим сопротивлением R за время

Магнитное поле.
Вокруг проводников с током и постоянных магнитов существует магнитное поле. Оно возникает вокруг любого направленно движущегося электрического заряда, а также при наличии переменного во времени эле

Магнитное взаимодействие токов
Между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Каждый заряд создает поле, которое действует на другой заряд и наоборот. Однако между электрическими зарядами

Магнитное поле
Подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем движущиеся заряды, возникает магнитное поле. Электричес

Действие магнитного поля на движущийся заряд. Сила Лоренца
Электрический ток – это совокупность упорядоченно движущихся заряженных частиц. Поэтому действие магнитного поля на проводник с током есть результат действия поля на движущиеся заряженные частицы в

Закон Ампера
Поместим в магнитное поле проводник длинной l, по которому течет ток I. На проводник действует сила, прямо пропорциональная силе тока, текущего по проводнику, индукции магнитного поля, длине

Закон Ампера
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Экспериментальное изучение магнитного взаимодействия показывает, что модуль силы Ампера пропорциона

Магнитный поток
Магнитным потоком сквозь некоторую поверхность называют физическую величину, равную полному числу линий магнитной индукции, пронизывающих эту поверхность. Рассмотрим однородное магн

Магнетик,
термин, применяемый ко всем веществам при рассмотрении их магнитных свойств. Разнообразие типов М. обусловлено различием магнитных свойств микрочастиц, образующих вещество, а также характера взаимо

Магнитные свойства вещества
Все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Поэтому индукция магнитного поля в однородной среде отличается от индукции поля в вакууме. Фи

Магнитный поток.
Магнитным потоком Ф через некоторую поверхность S называется скалярная величина, равная произведению модуля вектора магнитной индукции на площадь этой поверхности и косинус угла между нормалью n к

Электромагнитная индукция
Возникновение эдс в замкнутом проводящем контуре при изменении магнитного потока через эту поверхность, ограниченную этим контуром, называется электромагнитной индукцией. Также эдс индукции, а след

Индукция магнитного поля
Индукцией магнитного поля называется характеристика способности магнитного поля оказывать силовое действие на проводник с током. Она является векторной физической величиной. За направле

Электромагнитная индукция
Если электрический ток создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Первым нашел ответ на этот вопрос Майкл Фарадей. В 1831

Закон электромагнитной индукции
Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре р

Явление самоиндукции
Ток, текущий по проводящему контуру, создает вокруг него магнитное поле. Магнитный поток Ф, сцепленный с контуром, прямопропорционален силе тока в этом контуре: Ф=LI, где L – индуктивность контура.

Явление самоиндукции. Индуктивность
Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток через контур из этого проводника пропорционален модулю индукции магнитного поля внутри контура, а ин

Энергия магнитного поля
При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции. Источник

Электромагнитные волны.
Согласно теории Максвелла, переменное магнитное поле вызывает появление переменного вихревого эл. поля, которое, в свою очередь, вызывает появление переменного магнитного поля и т.д. Таким образом

Шкала электромагнитных волн.
Электромагнитные волны генерируются в широком диапазоне частот. Каждый участок спектра имеет свое названия. Так, видимому свету соответствует довольно узкий диапазон часто и соответственно длин вол

Лазеры и мазеры (эф. вынужденного излучения, схемы)
, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных

Геометрическая оптика
, раздел оптики, в котором изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль которой распространяется поток световой энергии.

Ферма принцип,
основной принцип геометрической оптики. Простейшая форма Ф. п. - утверждение, что луч света всегда распространяется в пространстве между двумя точками по тому пути, по которому вре

Поляризация света
одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой вол

Дифракция света.
Явление огибания волнами препятствий и попадания света в область геометрической тени называется дифракцией. Пусть плоская волна падает на щель в плоском экране АВ. Согласно принципа Гюйгенса-Френел

Принцип Гюгенеца Френеля. М-д Френеля.
    . Гюйгенса - Френеля принцип.

Голография.
(от греч. hólos - весь, полный и ...графия), метод получения объёмного изображения объекта, основанный на интерференции волн. Идея Г. была впервые высказана Д. Габором (Великобритания, 1948)

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги