рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Законы Стефана-Больцмана и смещения Вина

Законы Стефана-Больцмана и смещения Вина - раздел Электротехника, Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока Из Закона Кирхгофа (См. (198.1)) Следует, Что Спектральная Плотность Энергети...

Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Австрийский физик И. Стефан (183S-1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Л, от температуры. Согласно закону Стефана - Больцмана, (199.1)

т. е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры;s - постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,67×10-8 Вт/(м2 ×К4).

Закон Стефана - Больцмана, определяя зависимость Re от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции rl,T от длины волны l при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости rl,T от l и осью абсцисс, пропорциональна энергетической светимости Re, черного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

Рис. 287

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны lmax, соответствующей максимуму функции rl,T от температуры Т. Согласно закону смещения Вина, (199.2)

т. е. длина волны lmax, соответствующая максимальному значению спектральной плотности энергетической светимостиrl,T черного тела, обратно пропорциональна его термодинамической температуре, b - постоянная Вина; ее экспериментальное значение равно 2,9×10-3 м×К. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции rl,T по мере возрастания' температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

§ 200. ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКАИз рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости rv,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877-1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.Формула Рэлея - Джннса для спектральной плотности энергетической светимости черного тела имеет вид (200.1)

где áeñ = kT-средняя энергия осциллятора с собственной частотой v. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы (см. § 50), поэтому средняя энергия каждой колебательной степени свободы áeñ = kT.

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то время как по закону Стефана - Больцмана Re пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:rv1,T = Cv3Ae-Av/T где rv1,T - спектральная плотность энергетической светимости черного тела, С и А - постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменятьсянепрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе,атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами,причем энергия кванта пропорциональна частоте колебания (см. (170.3)): (200.2)

где h=6,625×10-34 Дж×с - постоянная Планка.Так как излучение испускается порциями, то энергия осциллятора е может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии e0:

В данном случае среднюю энергию áeñ осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана (§ 45), средняя энергия осциллятора а спектральная плотность энергетической светимости черного тела Таким образом, Планк вывел для универсальной функции Кирхгофа формулу (200.3)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при hv << kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея - Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами: Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея - Джинса (200.1).

Из формулы Планка можно получить закон Стефана - Больцмана. Согласно (198.3) и (200.3),

Введем безразмерную переменную x = hv/(kT); dx = hdv/(kT); dv = kTdx/h. Формула для Re, преобразуется к виду (200.4)

. Таким образом, действительно формула Планка позволяет получить закон Стефана - Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана - Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):

Откуда

Значение lmax, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя x = hc/(kTlmax), получим уравнение

Решение этого трансцендентного уравнения методом последовательных приближений дает х=4,965. Следовательно, hc/(kTlmax) = 4,965, откуда

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана - Больцманаа и Вина b. С другой стороны, зная экспериментальные значения а и b, можно вычислить значения А и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

№3Магнитный момент кругового тока. Теорема циркуляции. Сила Лоренца. Движение заряженных частиц в однородном магнитном поле.Сила Лоренца. Движение заряженной частицы в однородном постоянном магнитном поле Основные формулы Сила, действующая на электрический заряд q, движущийся со скоростью v в магнитном поле , (18) где – вектор магнитной индукции поля. Модуль силы, действующей на заряженную частицу, движущуюся в магнитном поле , (19)

где q – модуль заряда частицы; v – модуль вектора скорости; B – модуль вектора индукции магнитного поля, α – угол между векторами v и B.

Направление силы определяется по правилу левой руки:если ладонь левой руки расположить так, чтобы в нее входил вектор магнитной индукции B, а четыре вытянутых пальца направить вдоль скорости движения положительного заряда (против направления движения отрицательного заряда), то отогнутый на 90° большой палец покажет направление силы, действующей на заряд.

Если заряд движется в области, где существуют одновременно электрическое и магнитное поля, то на него действует полная сила ,(20) формула (20) называется формулой Лоренца.Методические рекомендации

1. Полная электромагнитная сила (сила Лоренца), действующая на заряд, определяется формулой (20). Данная формула справедлива как для постоянных, так и для переменных электрических и магнитных полей.

Эту силу разделяют на электрическую и магнитную составляющие. Если заряженная частица находится только в магнитном поле, то силу, определяемую выражением (18), обычно и называют силой Лоренца.

Важная особенность силы Лоренца – она всегда перпендикулярна вектору скорости заряда и поэтому не совершает над зарядом работы. Следовательно, в постоянном магнитном поле энергия движущейся заряженной частицы всегда постоянна.

Разделение полной электромагнитной силы на электрическую и магнитную зависит от выбора системы отсчета, так как магнитная составляющая силы Лоренца меняется при переходе от одной системы отсчета к другой, а значит, меняется и электрическая составляющая.

2. Под действием силы Лоренца заряженные частицы движутся в магнитном поле по криволинейным траекториям. Характер движения частицы в магнитном поле зависит от угла между первоначальным направлением скорости движения частицы и направлением линий индукции магнитного поля.

 Если скорость частицы перпендикулярна линиям магнитной индуции, то частица движется по круговой траектории (рис. 23).

Радиус окружности траектории

; Рис. 23

период вращения частицы по окружности: ,

где m– масса частицы; v– модуль скорости частицы;B – модуль вектора индукции магнитного поля; q– модуль электрического заряда.

Если заряженная частица движется вдоль линий магнитной индукции, сила Лоренца на нее не действует и характер ее движения не меняется.

Если угол α между первоначальным направлением скорости частицы и линиями магнитной индукции не равен ни 0°, ни 90°, ни 180°, траектория движения частицы представляет собой винтовую линию, накручивающуюся на линии магнитной индукции (рис. 24). Рис. 24

 

– тангенциальная составляющая скорости ; ; – нормальная составляющая скорости; ; – шаг винтовой линии; .

3. При движении заряженной частицы в области пространства, занятой одновременно и электрическим и магнитным полями характер ее движения зависит от направления этих полей и величины сил, действующих с их стороны, а также от скорости частицы.

► Векторы E иB взаимно-перпендикулярны и скорость v положительно заряженной частицы перпендикулярна силовым линиям этих полей. В этом случае на частицу действуют две силы: электрическая и магнитная , которые могут быть как сонаправлены, так и противоположно направлены. Если силы противоположно направлены и равны по модулю ( ), то частица будет двигаться равномерно и прямолинейно, согласно первому закону Ньютона.

В случае если силы не уравновешивают друг друга, то движение частицы будет сложным: она будет двигаться с ускорением вдоль линии напряженности электрического поля и совершать вращательное движение вокруг линии индукции магнитного поля.

Если силы, действующие на движущуюся заряженную частицу сонаправлены, то движение частицы также будет представлять суперпозицию двух движений: прямолинейного с ускорением вдоль линий вектора и вращательного вокруг линий вектора .

Частица влетает в область пространства параллельно векторам E и B. В этом случае на нее действует только электрическая сила (сила Лоренца , так как и ). Под действием этой силы частица движется прямолинейно с ускорением .

Закон Био–Савара. Теорема о циркуляции *)
Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию В проводника с током можно представить как векторную сумму элементарных индукций ∆В создаваемых отдельными участками проводника. На опыте невозможно осуществить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад ∆В в магнитную индукцию В результирующего магнитного поля, создаваемый малым участком Δl проводника с током I. Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора ∆В определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 4.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока: которая уже приводилась в § 1.16

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора В также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля токов часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора B . Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую Bl вектора B в данном месте, то есть определить проекцию вектора B на направление касательной к данному участку контура (рис. 4.17.2). Рисунок 4.17.2.

Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле. Циркуляцией вектора B называют сумму произведений Bl Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора B магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 4.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L.Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является определение магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор В направлен по касательной (Bl =B ), а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению: откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее. Этот пример показывает, что теорема о циркуляции вектора магнитной индукции B может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 4.17.3). Рисунок 4.17.3.

Применение теоремы о циркуляции к тороидальной катушке.Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 4.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 4.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора B одинаков вдоль всей этой линии. По теореме о циркуляции можно записать: B ∙ 2πr = μ0IN, где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае B = μ0In.

 

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.На рис. 4.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида. Рисунок 4.17.4.

Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 4.17.5. Рисунок 4.17.5. Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоидаВектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора B по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен Inl. Согласно теореме о циркуляции, Bl = μ0Inl откуда B = μ0In

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура pm, равным произведению силы тока I в контуре на площадь контура S:pm=IS (см. формулу (118.1)).
Единицей магнитного момента является ампер-метр в квадрате (А•м2). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 А•м2, обладает круговой контур радиуса 0,564 м (p•0,5642=1) либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 А•м2 обладает круговой контур радиуса 0,178 м (p•0,1782=0,1) и т. д.
Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона е на частоту n вращения электрона по орбите: I=en. Если радиус орбиты равен r, а скорость электрона — v, то n=vl2pr и, следовательно, I=ev/2pr. Магнитный момент, соответствующий этому току,
Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта [{рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении n. Выбранная таким образом нормаль называется положительной. Направление вектора pm принимается совпадающим с направлением положительной нормали n.
Теперь мы можем уточнить определение направления магнитной индукции В. За направление магнитной индукции В принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор pm.
Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856—1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.
Из формулы (118.2) следует, что

 

 

 

 

№4 Гипотеза Планка. Квантовое объяснение законов теплового излучения. Корпускулярно-волновой дуализм света.Внешний фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Определение постоянной Планка.

– Конец работы –

Эта тема принадлежит разделу:

Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока

Опыты показывают что магнитное поле оказывает на рамку с током ориентирую щее действие поворачивая ее определен ным образом Этот результат... Линии магнитной индукции можно проявить с помощью железных опилок... Линии магнитной индукции всегда за мкнуты и охватывают проводники с током Этим они отличаются от линий напряжен ности...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Законы Стефана-Больцмана и смещения Вина

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКА
Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал же

Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитиепри объяснении фотоэффекта - явления, открытие и исследовани

Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой v н

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитные свойства вещества объясняются согласно гипотезе Амперациркулирующими внутри любого вещества замкнутыми токами: внутри атомов, вследствие движения электронов по орбитам, существуют элемент

Эффект Комптона и его элементарная теория
Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веще

Единство корпускулярных и волновых свойств электромагнитного излучения
Рассмотренные в этой главе явления - излучение черного тела, фотоэффект, эффект Комптона - служат доказательством квантовых (корпускулярных) представлении о свете как о потоке фотонов. С другой сто

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ — диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва — ферромагнетики

Линейчатый спектр атома водорода
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных л

Серия Пашена ,серия Брэкета, серия Пфунда, серия Хэмфри
Все приведенные выше серив в спектре атома водорода могут быть описаны одной формулой, называемойобобщенной формулой Бальмера: (209.3) где т имеет в каждой данной с

Постулаты Бора
Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885--1962). Он поставил перед собой цель связать в единое целое эмпи

ОПЫТЫ ФРАНКА И ГЕРЦА
Изучая методом задерживающего потенциала столкновения электронов с атомами газов (1913), Д. Франк и Г. Герц экспериментально доказали дискретность значений энергии атомов. Принципиальная схема их у

СПЕКТР АТОМА ВОДОРОДА ПО БОРУ
Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

Волновая функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопреде

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИРОДЕ СВЕТА
Основные законы оптики известны еще с древних веков. Так, Платон (430 г. до н. э.) установил закон прямолинейного распространения и закон отражения света. Аристотель (350 г. до н. э.) и Птоломей из

СВЕТОВЫХ ВОЛН
Интерференцию света можно объяснить, рассматривая интерференцию волн (см. § 156). Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и прос

ИНТЕРФЕРЕНЦИЯ СВЕТА
Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1 = А1cos(&

МЕТОДЫ НАБЛЮДЕНИЯ ИНТЕРФЕРЕНЦИИ СВЕТА
Для осуществления интерференции света необходимо получить когерентные световые пучки, для чего применяются различные приемы. До появления лазеров (см. § 233) во всех приборах для наблюдения интерфе

ИНТЕРФЕРЕНЦИИ СВЕТА В ТОНКИХ ПЛЕНКАХ
В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного

ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА
Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и дл

Волновая функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопреде

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

ДВИЖЕНИЕ СВОБОДНОЙ ЧАСТИЦЫ
Свободная частица - частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги