рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Волновая функция и ее статистический смысл

Волновая функция и ее статистический смысл - раздел Электротехника, Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока Экспериментальное Подтверждение Идеи Де Бройля Об Универсальности Корпускуляр...

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории - созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Плавком квантовой гипотезы; см. § 200) до 20-х годов XX в.; оно связано прежде всего с работами австрийского физика Э. Шредингера (1887-1961), немецкого физика В. Гейзенберга и английского физика П. Дирака (1902-1984).

На данном этапе развития возникли новые принципиальные проблемы, в частности проблема физической природы волн де Бройля. Для выяснения этой проблемы сравним дифракцию световых волн и микрочастиц. Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882-1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая (х, у, z, t). Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля: (216.1)

(||2 = *, * - функция, комплексно сопряженная с ). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени г в области с координатами х и x+dx, у и y+dy, z и z+dz.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому - с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна (216.2)Величина

(квадрат модуля -функции) имеет смысл плотности вероятности,т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама -функция, а квадрат ее модуля ||2, которым задается интенсивность волн де Бройля.

Вероятность найти частицу в момент времени е в конечном объеме V, согласно теореме сложения вероятностей, равна

Так как ||2dF определяется как вероятность, то необходимо волновую функцию  нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно,условие нормировки вероятностей (216.3)

где данный интеграл (216.3) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от -  до . Таким образом, условие (216.3) говорит об объективном существовании частицы в пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микро частиц, она должна удовлетворять ряду ограничительных условий. Функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной(вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

Волновая функция удовлетворяет принципу суперпозиции:если система может находиться в различных состояниях, описываемых волновыми функциями 1, 2, …, n,…, то она также может находиться в состоянии , описываемом линейной комбинацией этих функций:

где Сn (n = 1, 2, ...) - произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция , являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние r электрона от ядра вычисляют по формуле

где интегрирование производится, как и в случае (216.3).

– Конец работы –

Эта тема принадлежит разделу:

Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока

Опыты показывают что магнитное поле оказывает на рамку с током ориентирую щее действие поворачивая ее определен ным образом Этот результат... Линии магнитной индукции можно проявить с помощью железных опилок... Линии магнитной индукции всегда за мкнуты и охватывают проводники с током Этим они отличаются от линий напряжен ности...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Волновая функция и ее статистический смысл

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы Стефана-Больцмана и смещения Вина
Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и тем

ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКА
Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал же

Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитиепри объяснении фотоэффекта - явления, открытие и исследовани

Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой v н

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитные свойства вещества объясняются согласно гипотезе Амперациркулирующими внутри любого вещества замкнутыми токами: внутри атомов, вследствие движения электронов по орбитам, существуют элемент

Эффект Комптона и его элементарная теория
Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веще

Единство корпускулярных и волновых свойств электромагнитного излучения
Рассмотренные в этой главе явления - излучение черного тела, фотоэффект, эффект Комптона - служат доказательством квантовых (корпускулярных) представлении о свете как о потоке фотонов. С другой сто

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ — диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва — ферромагнетики

Линейчатый спектр атома водорода
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных л

Серия Пашена ,серия Брэкета, серия Пфунда, серия Хэмфри
Все приведенные выше серив в спектре атома водорода могут быть описаны одной формулой, называемойобобщенной формулой Бальмера: (209.3) где т имеет в каждой данной с

Постулаты Бора
Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885--1962). Он поставил перед собой цель связать в единое целое эмпи

ОПЫТЫ ФРАНКА И ГЕРЦА
Изучая методом задерживающего потенциала столкновения электронов с атомами газов (1913), Д. Франк и Г. Герц экспериментально доказали дискретность значений энергии атомов. Принципиальная схема их у

СПЕКТР АТОМА ВОДОРОДА ПО БОРУ
Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИРОДЕ СВЕТА
Основные законы оптики известны еще с древних веков. Так, Платон (430 г. до н. э.) установил закон прямолинейного распространения и закон отражения света. Аристотель (350 г. до н. э.) и Птоломей из

СВЕТОВЫХ ВОЛН
Интерференцию света можно объяснить, рассматривая интерференцию волн (см. § 156). Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и прос

ИНТЕРФЕРЕНЦИЯ СВЕТА
Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1 = А1cos(&

МЕТОДЫ НАБЛЮДЕНИЯ ИНТЕРФЕРЕНЦИИ СВЕТА
Для осуществления интерференции света необходимо получить когерентные световые пучки, для чего применяются различные приемы. До появления лазеров (см. § 233) во всех приборах для наблюдения интерфе

ИНТЕРФЕРЕНЦИИ СВЕТА В ТОНКИХ ПЛЕНКАХ
В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного

ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА
Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и дл

Волновая функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопреде

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

ДВИЖЕНИЕ СВОБОДНОЙ ЧАСТИЦЫ
Свободная частица - частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги