Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (eq), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQ+ЕB. Так как циркуляция вектора eq равна нулю (см. (137.3)), а циркуляция вектора ЕB оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)): Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D: Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):D=e0eE, В=m0mН,

j=gE, где e0 и m0 — соответственно электриче­ская и магнитная постоянные, e и m — соответственно диэлектрическая и магнит­ная проницаемости, g — удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е=const и В=const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме(характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная и дифференциальная — эквивалентны. Однако когда имеются поверхности разры­ва— поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D1n=D2n, E1t=E2t, B1n=B2n, H1t= H2t

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла — наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн— перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3•108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна,механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

№14Квантовая частица в одномерной, бесконечно глубокой прямоугольной потенциальной яме. Собственные значения частицы и собственные нормированные волновые функции, описывающие ее состояние§ 220. Частица в одномерной прямоугольной «потенциальной яме» c бесконечно высокими «стенками»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l - ширина «ямы», а энергия отсчитывается от ее дна (рис. 296).

Рис. 296

Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде (220.1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид (220.2) В пределах «ямы» (0  х  l) уравнение Шредингера (220.1) сведется к уравнению

220.3 или 220.4гдеОбщее решение дифференциального уравнения (220.3): (x) = Asin kx + Bcos kx. Так как по (220.2) (x) = 0, то B = 0. Тогда (220.5) Условие (220.2) (l) = Asin kl выполняется только при kl = n, где n - целые числа, т. е. необходимо, чтобы (220.6)Из выражений (220.4) и (220.6) следует, что (220.7)т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях , зависящих от целого числа n. Следовательно, энергия En частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется. Квантованные значения энергии En называются уровнями энергии, а число л, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне En, или, как говорят, частица находится в квантовом состоянии n.

Подставив в (220.5) значение k из (220.6), найдем собственные функции:

Постоянную интегрирования А найдем из условия нормировки (216.3), которое для данного случая запишется в виде В результате интегрирования получим а собственные функции будут иметь вид (220.8)

Графики собственных функций (220.8), соответствующие уровням энергии (220.7) при n = 1, 2, 3, приведены на рис. 297,а. На рис. 297,б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная |n(x)|2 = n(x) *n(x) для n = 1, 2 и 3.

Из рисунка следует, что, например, в квантовом состоянии с n = 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (220.7) вытекает, что энергетический интервал между двумя сосед ними уровнями равен (220.9)Например, для электрона при размерах ямы l = 10-1 м (свободные электроны в металле) En  10-35 n Дж 10-16 n эВ, т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l = 10-10 м), то для электрона En  10-17 n Дж 102 n эВ, т. е. получаются явно дискретные значения энергии (линейчатый спектр). Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная 22/(2ml2). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Аде частицы в «яме» шириной l равна x = l. Тогда, согласно соотношению неопределенностей (215.1), импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса р  h/l. Такому разбросу значений импульса соответствует кинетическая энергия Emin (p)2/(2m) = h2/(2ml2). Все остальные уровни (n > 1) имеют энергию, превышающую это минимальное значение.

Из формул (220.9) и (220.7) следует, что при больших квантовых числах (n >> 1) En/En  2/n << 1, т. е. соседние уровни расположены тесно: тем теснее, чем больше n. Если n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов - дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия, имеющего огромную роль в со временной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных пре дельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.