рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ИНТЕРФЕРЕНЦИИ СВЕТА В ТОНКИХ ПЛЕНКАХ

ИНТЕРФЕРЕНЦИИ СВЕТА В ТОНКИХ ПЛЕНКАХ - раздел Электротехника, Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока В Природе Часто Можно Наблюдать Радужное Окрашивание Тонких Пленок (Масляные ...

В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной d под углом i (рис. 249) падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке Олуч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0 = 1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы. В результате возникает интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами. Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ,

где показатель преломления окружающей пленку среды принят равным 1, а член ±0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если n > n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус; если же n < n0, то потеря полуволны произойдет в точке С и 0/2 будет иметь знак плюс. Согласно рис. 249, ОС= СВ= d/cos г, ОА = OBsin I = 2d tgr sini. Учитывая для данного случая закон преломления sini =nsin r, получим

С учетом потери полуволны для оптической разности хода получим

и минимум,

 

 

если (см. (172.3) (174.3)

Интерференция, как известно, наблюдается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны.

1. Полосы равного наклона (интерференция от плоскопараллельной пластины).Из выражений (174.2) и (174.3) следует, что интерференционная картина в плоскопараллельных пластинках (пленках) определяется величинами0, d, n и i. Для данных 0, d и n каждому наклону i лучей соответствует своя интерференционная полоса. Интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.

Лучи 1 и 1, отразившиеся от верхней и нижней граней пластинки (рис. 250), параллельны друг другу, так как пластинка плоскопараллельна.

 

Следовательно, интерферирующие лучи 1 и 1 «пересекаются» только в бесконечности, поэтому говорят, чтополосы равного наклона локализованы в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1 и 1 соберутся в фокусе F линзы (на рис. 250 ее оптическая ось параллельна лучам 1 и 1), в эту же точку придут и другие лучи (на рис. 250 - луч 2), параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой точке Р фокальной плоскости линзы. Легко показать, что если оптическая ось линзы перпендикулярна поверхности пластинки, то полосы равного наклона будут иметь вид концентрических колец с цент ром в фокусе линзы.

2. Полосы равной толщины (интерференция от пластинки переменной толщины). Пусть на клин (угол между боковыми гранями мал) падает плоская волна, направление распространения которой совпадает с параллельными лучами 1 и 2 (рис. 251). Из всех лучей, на которые разделяется падающий луч 1, рассмотрим лучи 1 и 1, отразившиеся от верхней и нижней поверхностей клина. При определенном взаимном положении клина и линзы лучи 1' и 1" пересекутся в некоторой точке А, являющейся изображением точки В. Так как лучи 1 и 1 когерентны, они будут интерферировать. Если источник расположен довольно далеко от поверхности клина и угол, а ничтожно мал, то оптическая разность хода между интерферирующими лучами 1' и 1" может быть с достаточной степенью точности вычислена по формуле (174.1), где d - толщина клина в месте падения на него луча. Лучи 2' и 2", образовавшиеся при делении
луча 2, падающего в другую точку клина, собираются линзой в точке А'. Оптическая разность хода уже определяется толщиной d'. Таким образом, на экране возникает система интерференционных полос. Каждая из полос возникает при отражении от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называются полосами равной толщины.

Рис. 251

Так как верхняя и нижняя грани клина не параллельны между собой, то лучи 1 и 1 (2' и 2") пересекаются вблизи пластинки, в изображенном на рис. 251 случае - над ней (при другой конфигурации клина они могут пересекаться и под пластинкой). Таким образом, полосы равной толщины локализованы вблизи поверхности клина. Бели свет падает на пластинку нормально, то полосы равной толщины локализуются на верхней поверхности клина.

3. Кольца Ньютона. Кольца Ньютона, являющиеся классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны (рис. 252). Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падении света имеющие вид концентрических окружностей.

В отраженном свете оптическая разность хода (с учетом потери полуволны при отражении), согласно (174.1), при условии, что показатель преломления воздуха n = 1, а I = 0,

где d-ширина зазора.

Из рис. 252 следует, что R2 = (R - d)2 + r2, где R - радиус кривизны линзы, r - радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая, что d мало, получим d = r2/(2R). Следовательно,

(174.4)

Приравняв (174.4) к условиям максимума (172.2) и минимума (172.3), получим выражения для радиусов m-гoсветлого кольца и m-го темного кольца соответственно

Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить 0 и, наоборот, по известной 0 найти радиус кривизны R линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны0 (см. (174.2)). Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были проведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на 0/2, т. е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

– Конец работы –

Эта тема принадлежит разделу:

Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Закон Био-Савара-Лапласа. Магнитная индукция прямого и кругового тока

Опыты показывают что магнитное поле оказывает на рамку с током ориентирую щее действие поворачивая ее определен ным образом Этот результат... Линии магнитной индукции можно проявить с помощью железных опилок... Линии магнитной индукции всегда за мкнуты и охватывают проводники с током Этим они отличаются от линий напряжен ности...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ИНТЕРФЕРЕНЦИИ СВЕТА В ТОНКИХ ПЛЕНКАХ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы Стефана-Больцмана и смещения Вина
Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и тем

ФОРМУЛЫ РЭЛЕЯ - ДЖИНСА И ПЛАНКА
Из рассмотрения законов Стефана - Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа rv,T не дал же

Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитиепри объяснении фотоэффекта - явления, открытие и исследовани

Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой v н

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
Магнитные свойства вещества объясняются согласно гипотезе Амперациркулирующими внутри любого вещества замкнутыми токами: внутри атомов, вследствие движения электронов по орбитам, существуют элемент

Эффект Комптона и его элементарная теория
Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веще

Единство корпускулярных и волновых свойств электромагнитного излучения
Рассмотренные в этой главе явления - излучение черного тела, фотоэффект, эффект Комптона - служат доказательством квантовых (корпускулярных) представлении о свете как о потоке фотонов. С другой сто

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ — диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва — ферромагнетики

Линейчатый спектр атома водорода
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных л

Серия Пашена ,серия Брэкета, серия Пфунда, серия Хэмфри
Все приведенные выше серив в спектре атома водорода могут быть описаны одной формулой, называемойобобщенной формулой Бальмера: (209.3) где т имеет в каждой данной с

Постулаты Бора
Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885--1962). Он поставил перед собой цель связать в единое целое эмпи

ОПЫТЫ ФРАНКА И ГЕРЦА
Изучая методом задерживающего потенциала столкновения электронов с атомами газов (1913), Д. Франк и Г. Герц экспериментально доказали дискретность значений энергии атомов. Принципиальная схема их у

СПЕКТР АТОМА ВОДОРОДА ПО БОРУ
Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

Волновая функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопреде

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИРОДЕ СВЕТА
Основные законы оптики известны еще с древних веков. Так, Платон (430 г. до н. э.) установил закон прямолинейного распространения и закон отражения света. Аристотель (350 г. до н. э.) и Птоломей из

СВЕТОВЫХ ВОЛН
Интерференцию света можно объяснить, рассматривая интерференцию волн (см. § 156). Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и прос

ИНТЕРФЕРЕНЦИЯ СВЕТА
Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1 = А1cos(&

МЕТОДЫ НАБЛЮДЕНИЯ ИНТЕРФЕРЕНЦИИ СВЕТА
Для осуществления интерференции света необходимо получить когерентные световые пучки, для чего применяются различные приемы. До появления лазеров (см. § 233) во всех приборах для наблюдения интерфе

ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА
Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и дл

Волновая функция и ее статистический смысл
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микро-объектам, диктуемая соотношением неопреде

ОБЩЕЕ УРАВНЕНИЕ ШРЕДИНГЕРА. УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ СТАЦИОНАРНЫХ СОСТОЯНИЙ
Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение мик

ДВИЖЕНИЕ СВОБОДНОЙ ЧАСТИЦЫ
Свободная частица - частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги