Единство корпускулярных и волновых свойств электромагнитного излучения

Рассмотренные в этой главе явления - излучение черного тела, фотоэффект, эффект Комптона - служат доказательством квантовых (корпускулярных) представлении о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств -непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга. Основные уравнения (см. § 205), связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами (частота или длина волны): Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживаются волновые свойства света (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решетки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей распространения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещенность экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещенность пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку

№7.классификация магнетиков: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.Классификация магнетиковВсе существующие в природе вещества по своим магнитным свойствам подразделяются на пять видов магнетиков: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики (ферриты). В связи с тем что магнитную активность проявляют все вещества без исключения, можно утверждать, что магнитные свойства веществ определяются элементарными частицами, входящими в состав каждого атома. Такими одинаковыми для всех веществ частицами являются электроны, протоны и нейтроны. Исследования показали, что магнитные моменты протона и нейтрона почти на три порядка ниже наименьшего магнитного момента электрона, поэтому в первом приближении можно пренебречь магнитным моментом ядра, состоящего из протонов и нейтронов, и полагать, что магнитные свойства атома в целом определяются электронами. Это положение является фундаментальным в электронной теории магнетизма, которая общепринята в учении о магнетизме.Каждый атом вещества представляет собой динамическую систему, состоящую из ядра и электронного облака. Каждый электрон обладает определенным спиновым магнитным моментом и орбитальным магнитным моментом . С некоторой степенью упрощения можно сказать, что спиновый магнитный момент обусловлен вращением электрона вокруг собственной оси, а орбитальный − движением электрона по некоторой замкнутой орбите внутри атома. Следовательно, полный магнитный момент атома будет представлять собой геометрическую сумму орбитальных и спиновых магнитных моментов электронов, относящихся к данному атому

где z − число электронов в атоме.

Рассмотрим макроскопические характеристики твердых тел, связанные с характером взаимодействия магнитных моментов с внешним полем и определяющие принадлежность данного вещества к одному из видов магнетиков [38]В любом веществе, внесенном в магнитное поле, возникает суммарный магнитный момент , который складывается из сумм магнитных моментов , связанных с отдельными частицами (атомами, молекулами). Размерность магнитного момента в системе «СИ» − Вольтсекундаметр [Всм] или Веберметр [Вбм].Одна из основных характеристик магнетиков – их намагниченность Намагниченность j − векторная величина, модуль которой равен магнитному моменту единицы объема вещества. Намагниченность растет с ростом индукции магнитного поля (или напряженности ) в соответствии с законом

где магнитная постоянная, − относительная магнитная проницаемость, которая показывает, во сколько раз магнитная индукция поля в данной среде больше или меньше, чем в вакууме (в вакууме = 1), æмагнитная восприимчивость вещества, характеризующая способность данного вещества намагничиваться полем напряженности .

Величины æ и являются скалярными, и магнитная восприимчивость æ для различных веществ может принимать значения как больше, так и меньше нуля. Руководствуясь этим свойством, вещества можно разделить на пара-, диа- и ферромагнетики.

Если магнитная восприимчивость принимает положительные значения (æ > 0), то вектор намагниченности (из формулы 7.4) сонаправлен вектору напряженности внешнего магнитного поля ( ). Такие вещества относятся к парамагнетикам.

Если магнитная восприимчивость æ < 0, то векторы намагниченности и напряженности направлены противоположно друг другу ( ), что характерно для диамагнетиков.

Как правило, по абсолютной величине магнитная восприимчивость парамагнетиков больше, чем диамагнетиков. Зависимость намагниченности этих типов магнетиков от величины напряженности магнитного поля линейна (рис. 7.1), и при отсутствии внешнего поля она равна нулю.

Интересно, что линейная зависимость для парамагнетиков имеет место только в области слабых полей и высоких температур. В сильных полях и при низких температурах выходит на насыщение (рис. 7.2). Рис. 7.1. Зависимость намагниченности от напряженности магнитного поля: 1диамагнетика; 2  парамагнетика Рис. 7.2. Зависимость намагниченности от напряженности магнитного поля в сильных полях и при низких температурах выходит на насыщение

Кроме двух рассмотренных видов магнетиков, имеется также достаточно большая группа веществ, обладающих спонтанной намагниченностью. Они называются ферромагнетиками и имеют отличную от нуля магнитную восприимчивость ( ) даже в отсутствие внешнего поля. Механизм намагничивания ферромагнетиков оказывается довольно сложным, и полный цикл намагниченности ферромагнетиков описывается петлей гистерезиса (рис. 7.3).В ряде кристаллов направления вектора магнитной индукции и напряженности магнитного поля не совпадают. В этом случае магнитная проницаемость вещества является тензорной величиной, т. е. зависит от направления внутри кристалла. Такие вещества называются магнитно-анизотропными. Мы будем рассматривать здесь только магнитно-изотропные вещества, для которых магнитная проницаемость − простое число.

Найдем связь между магнитной проницаемостью и восприимчивостью вещества. Величина магнитной индукции связана с напряженностью поля соотношением

 

Для ферромагнетика результирующее поле в нем, которое и является магнитной индукцией, можно определить как

: (7.6)

поле в ферромагнетике складывается из напряженности внешнего магнитного поля и намагниченности , создающей внутреннее магнитное поле. Тогда из формул (7.6), (7.5) и

(7.4) получим = >

Выше было сказано, что магнитный момент атомов связан с движением электронов относительно своей оси и их орбитальным движением. Следовательно, существует некая жесткая связь между механическими и магнитными характеристиками атомов. Эта связь задается так называемыми гиромагнитными соотношениями. Обозначим орбитальный механический момент электрона , а спиновый механический момент электрона . Пользуясь обозначениями магнитных моментов, заданными в формуле (7.1), запишем гиромагнитные соотношения где е − заряд электрона, а т − его масса.

Следуя первому постулату Бора, согласно которому орбитальный момент количества движения электрона должен быть квантован и кратен величине (постоянной Планка, деленной на 2π), можно сделать вывод, что квантован и орбитальный магнитный момент . Элементарный магнитный момент атома с одним электроном, движущимся по первой орбитали, называется магнетоном Бора:

.Диамагнетики – вещества, характеризуемые отрицательным значением магнитной восприимчивости χ. Вследствие этого вектор намагничивания в этих веществах направлен противоположно внешнему намагничивающему полю . Диамагнетиками являются, например, вода (χ = - 9∙10-6), серебро (χ = - 2,6∙10-5), висмут (χ = - 1,7∙10-4).Парамагнетики – характеризуются положительным значение χ , ведут они себя подобно диэлектрикам с диэлектрической проницаемостью ε>1, то есть вектор в этих веществах параллелен намагничивающему полю . К парамагнетикам относятся алюминий (χ = 2,1∙10-6), платина (χ = 3∙10-4), хлористое железо (χ = 2,5∙10-3).

Ферромагнетики – особый вид магнетиков, отличающийся от других магнетиков следующими характерными признаками: 1) высоким значением магнитной восприимчивости (см. таблицу); 2) зависимостью магнитной проницаемости μ от напряженности магнитного поля, вследствие чего зависимость В от Н для этих веществ является нелинейной; 3) наличием петли гистерезиса на кривой намагничивания; 4) существованием температуры, называемой точкой Кюри, выше которой ферромагнетик ведет себя как обычный парамагнетик. Из чистых металлов ферромагнетиками являются железо, никель, кобальт, а также некоторые редкоземельные металлы (например, гадолиний). К числу ферромагнетиков относятся сплавы и соединения этих металлов, а также сплавы и соединения марганца и хрома с неферромагнитными элементами (например, MnAlCu, CrTe и другие).Ферримагнетики(ферриты) – вещества, в которых магнитные моменты атомов кристаллической решетки образуют несколько магнитных подрешеток с магнитными моментами, направленными навстречу друг другу. Имея меньшую величину магнитной восприимчивости по сравнению с ферромагнетиками, в остальном ферримагнетики характеризуются теми же признаками, что и ферромагнетики. Типичными ферритами являются соединения оксидов железа с оксидами других металлов - шпинели (MnFe2O4), гранаты Gd3Fe5O12), гексаферриты (PbFe12O19). Другую группу ферритов образуют двойные фториды типа RbNiF3, а также соединения типа RFe2 (R – редкоземельный металл).Антиферромагнетики– частный случай ферримагнетиков, в которых магнитные моменты подрешеток с противоположно направленными магнитными моментамиполностью компенсируют друг друга (скомпенсированный ферримагнетик). Существование антиферромагнетиков было предсказано Л.Д.Ландау в 1933г. В настоящее время известен широкий спектр веществ, обладающих антиферромагнитными свойствами: редкоземельные элементы (Er, Dy, Ho), оксиды и дифториды некоторых металлов (FeO, MnO, CoF2, NiF2), соли угольной и серной кислот (MnCO3, NiSO4) и другие. Сверхдиамагнетики (идеальные диамагнетики) – вещества, магнитная прони-цаемостьμ которых равна нулю. Благодаря этой особенности для сверхдиамагнетиков имеет местоэффект Мейсснера-Оксенфельда (Meissner W., 1882-1974; Ocksenfeld C.) – полное выталкивание магнитного поля из объема сверхдиамагнетика (магнитная индукцияВ=0). Сверхдиамагнетиками являются все вещества, находящиеся в сверхпроводящем состоянии - низкотемпературные сверхпроводники (металлы) и высокотемпературныесверхпроводники (керамики). Из несверхпроводящих материалов, обладающих сверхдиамагнитными свойствами, известен пока только один пример – хлорид меди (CuCl), открытый в 1986г. (Русаков А.П., МИСиС).§ 131. Магнитные моменты электронов и атомовРассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того что­бы разобраться в магнитных свойствах сред и их влиянии на магнитную индук­цию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.Опыт показывает, что все вещества, помещенные в магнитное поле, намагничи­ваются. Рассмотрим причину этого явле­ния с точки зрения строения атомов и мо­лекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи,обусловленные движением электронов в атомах и молекулах.Для качественного объяснения маг­нитных явлений с достаточным приближе­нием можно считать, что электрон движет­ся в атоме по круговым орбитам. Элек­трон, движущийся по одной из таких орбит, эквивалентен круговому току, по­этому он обладает орбитальным магнит­ным моментом(см. (109.2)) pm = ISn, мо­дуль которогоpm=IS=evS, (131.1) где I = ev — сила тока, v — частота вра­щения электрона по орбите, S — площадь орбиты. Если электрон движется по часо­вой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор рm в со­ответствии с правилом правого винта направлен перпендикулярно плоскости орби­ты электрона.С другой стороны, движущийся по ор­бите электрон обладает механическим мо­ментом импульса Le, модуль которого, со­гласно (19.1),

Le=mvr=2mvS, (131.2) где v=2pvr, pr2=S. Вектор Le (его на­правление также подчиняется правилу правого винта), называется орбитальным механическим моментом электрона.

Из рис. 187 следует, что направления рm и Le противоположны, поэтому, учиты­вая выражения (131.1) и (131.2), получим

pm=-(e/2m)Le=gLe, (131.3)где величинаg=-e/2m (131.4) называется гиромагнитным отношением орбитальных моментов(общепринято пи­сать со знаком « - », указывающим на то, что направления моментов противополож­ны). Это отношение, определяемое уни­версальными постоянными, одинаково для любой орбиты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит. Экспериментальное определение гиро­магнитного отношения проведено в опытах Эйнштейна и де Гааза (1915), которые наблюдали поворот свободно подвешенно­го на тончайшей кварцевой нити железно­го стержня при его намагничении во внеш­нем магнитном поле (по обмотке соленои­да пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужден­ных крутильных колебаний стержня опре­делялось гиромагнитное отношение, кото­рое оказалось равным — (е/т). Таким об­разом, знак носителей, обусловливающих молекулярные токи, совпадал со знаком заряда электрона, а гиромагнитное отно­шение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имев­шего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орби­тальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механиче­ским моментом импульса Les, называемым спином.Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством элек­трона, подобно его заряду и массе. Спину электрона Les соответствует собственный (спиновый) магнитный момент pms, про­порциональный Les и направленный в про­тивоположную сторону:pms=gsLes. (131.5) Величина gs называется гиромагнитным отношением спиновых моментов.Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений: где h=h/(2p) (h — постоянная Планка), mвмагнетон Бора,являющийся едини­цей магнитного момента электрона.

В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнит­ный момент атома, следовательно, склады­вается из магнитных моментов входящих в его состав электронов и магнитного мо­мента ядра (обусловлен магнитными мо­ментами входящих в ядро протонов и ней­тронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают.Таким образом, общий магнитный момент атома (молекулы) ра равен векторной сум­ме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:pа=Sрm+Sрms. (131.6)Еще раз обратим внимание на то, что при рассмотрении магнитных моментов электронов и атомов мы пользовались классической теорией, не учитывая огра­ничений, накладываемых на движение электронов законами квантовой механики. Однако это не противоречит полученным результатам, так как для дальнейшего объяснения намагничивания веществ су­щественно лишь то, что атомы обладает магнитными моментами.