Нагрузочный режим однофазного трансформатора.

Трансформатором называется статический электромаг-нитный аппарат, служащий для преобразования электроэнергии переменного тока с одними параметрами (U, I, их форма и начальная фаза) в электроэнергию с другими параметрами при сохранении частоты переменного тока неизменной

w1 w2     Ф  
I2   U2
I0   U1   Ф1р
Zн
Ф
Режим нагрузки трансформатора. В режиме нагрузки вторичная цепь замкнута на нагрузочное сопротивление и по ней проходит ток I .

 

Рис. 29. Трансформатор под нагрузкой.

Можно выделить 3 потока: основной Ф, сцеплённый с обоими обмотками, поток рассеяния первичной обмотки Ф и поток рассеяния вторичной обмотки Ф. Дополнительные ЭДС, индуктируемые в обмотках потоками рассеяния, учитываются при помощи индуктивных сопротивлений рассеяния х1 и х2. Потоки рассеяния пропорциональны токам I1 и I2 и находятся с ними в фазе. Они индуктируют в обмотках ЭДС Е и Е, отстающие по фазе от потоков и токов на угол π/2. ЭДС уравновешиваются составляющими напряжений

jx1 I1 = - E1p и jx2 I2 = - E2p,

где jx1 = jωL; jx2 = jωL- комплексные сопротивления рассеяния обмотoк;
L1p = ψ1p/I1 и L2p = ψ2p/I2 - индуктивности рассеяния обмоток;

ψ1p и ψ2p - потокосцепления рассеяния;

ω - угловая частота.

Реактивные составляющие напряжений x1 I1 , x2 I2 опережают токи I1 и I2 на угол π/2.

По второму закону Кирхгофа:

U1 + E1 = I1z1 ; E2 = U2 + I2z2,

где U2 - напряжение на Zн (вторичное напряжение);

Z2 = r2 + jx2; Z1 = r1 + jx1 - комплексные полные сопротивления обмоток.

Падения напряжения I1z1 и I2z2 составляют обычно не более нескольких % от U1 и U2. Поэтому с приближением можно считать, что и в нагруженном трансформаторе сохраняются равенства U1E1 и U2E2. следовательно, при нагрузке трансформатора амплитуда Ф примерно const и равна амплитуде Ф в режиме хх. Постоянной должна быть и М.Д.С как при нагрузке, так и при ХХ. В режиме нагрузки результирующая М.Д.С. равна сумме М.Д.С. первичной и вторичной обмоток w1I1 + w1I1 = w1I0. Разделив на w1, получим:

I1 + I2 1/k = I0.

На хх I2 = 0 и I1 = I0. При нагрузке появляется ток I2, по закону Ленца препятствующий причине, его вызвавшей. Поэтому I2 так направлен, чтобы размагнитить магнитопровод, т.е. действие его противоположно действию I1. Это вызывает увеличение I в соответствии с полученным выражением.

 

Рис. 30. Векторная диаграмма нагруженного трансформатора.

На векторной диаграмме для удобства будем откладывать приведённые вторичные U и­ I . Вектор I2 = I2 / k = (1/k) (E2 / ). Сдвиг фаз между I и E :

Ψ2 = arc tg (x2 + xн )/(r2 + rн ) .

Вектор U2 = k U2 = E2 – I2 z2 .

Приведённые сопротивления вторичной обмотки определяются отношением приведённых напряжений к приведённым токам.

Из вектора E2 вычитаем jx2 I2 , опережающий ток I2 на угол π/2, и r2 I2 , совпадающий с I2 по фазе. В результате определяется

U2 = E2 – r2 I2 – jx2 I2 .

Для построения I надо I0I2 .

Для построения U1 строим -E1 и к нему добавляем r1 I1 , совпадающий по фазе с I1 , и вектор jx1 I1 , опережающий I1 на 90о. Угол φ1 между U1 и I1 является сдвигом фаз в первичной цепи. Из векторной диаграммы нагруженного трансформатора видно, что увеличение I2 вызывает увеличение I1 , потребляемого из сети. Для ясности rI и xI показаны большими. На самом деле они составляют не более нескольких % от U1 и U2 .

 

33. Устройство и принцип действия асинхронного двигателя. Уравнения э.д.с., м.д.с. и токов.Вращающееся магнитное поле, создаваемое неподвижной обмоткой, используется в асинхронной машине, которая является машиной переменного тока. Статор 1 представляет собой цилиндр, составленный из листов электротехнической стали, листы имеют форму колец со штампованными пазами. В пазах 2 закладывается статорная обмотка. Выполняется она так, что при включении ее в сеть переменного в расточке статора (внутри

 

 

Рис. 37. Устройство асинхронной машины.

цилиндра) образуется магнитное поле, вращающееся вокруг оси статора с постоянной скоростью. Ротор 3 имеет вид цилиндра, набранного из круглых листов стали. У поверхности его вдоль образующих расположены проводники 4, составляющие обмотку ротора. Она не связана с внешней электрической сетью. Токи в ней возникают в результате того, что ротор при вращении отстает от вращающегося поля. Значение этих токов определяется скоростью вращения магнитного поля относительно ротора. Эта скорость оценивается понятием скольжения асинхронной машины:

s = (nо - n)/nо ,

где nо - скорость вращения магнитного потока, или синхронная скорость, n - скорость вращения ротора, n = nо (1 - s). Условием возникновения токов в роторе является неравенство скоростей n ¹ nо, ротор не может вращаться со скоростью, равной синхронной, поэтому и возникло название асинхронная («а» - отрицание).

Ротор выпускается как фазным, так и короткозамкнутым. Фазный ротор имеет трехфазную обмотку, выполненную подобно статорной, с тем же числом полюсов. Обмотка соединяется звездой или треугольником, три конца выводятся на три изолированных контактных кольца, вращающихся вместе с валом. Через щетки в ротор включается 3-фазный пусковой или регулировочный реостат, т.е. в каждую фазу вводится активное сопротивление. Асинхронные двигатели с фазным ротором применяются там, где требуется плавное регулирование скорости, а также при частых пусках двигателя под нагрузкой. Короткозамкнутый ротор проще, чем фазный. Отверстия вблизи наружной части каждого листа сердечника составляют продольные пазы, в которые заливается алюминий. Твердея, он образует продольные токопроводящие стержни. По обоим торцам отливаются алюминиевые кольца, замыкающие накоротко стержни. Полученная токопроводящая система называется беличьей клеткой. Двигатели с короткозамкнутым ротором наиболее просты, надежны и дешевы и наиболее распространены.

Электромагнитная мощность, передаваемая ротору вращающимся магнитным полем, равна:

Рэм. = Мэм. p nо /30 = Мэм. 2p f/р

М ≈ Мэм. = с Ф I2 cos ψ2 (н м), если Ф (вб), I (А)– уравнение м.д.с.

– уравнение э.д.с.

– уравнение токов.

Асинхронный трехфазный двигатель с фазным ротором состоит из неподвижной части-статора и подвижной-ротора. Статор включает в себя корпус, магнитопровод, обмотку; ротор- вал, магнитопровод, обмотку и кольца. Магнитопровод изготавливают из отдельных тонких пластин электротехнической стали и имеет пазы, в которые уложении три обмотки смещенные между собой на 120 градусов. Обмотки статора и ротора соединены как правило в звезду. Обмотка статора подсоединяется к сети, а обмотка ротора через щетки к реостату. При подключении статора к сети с напряжением U, по его обмоткам протекают синусоидальные токи I, благодаря чему создаётся магнитное поле. В результате пересечения этим полем обмоток ротора в них создаётся ЭДС и ток. Взаимодействие тока с магнитным полем приводит во вращение ротор.

Уравнение МДС: M = C*I*Ф