рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нелинейные элементы

Нелинейные элементы - раздел Электротехника, По учебной дисциплине электротехника и электроника     ...

 

 

 

Лампа накаливания - элемент резистивного типа, преобразующий электроэнергию в световую энергию. Она характеризуется двумя параметрами: максимальной мощностью Рмах и максимальным напряжением Vmax. Максимальная мощность может иметь величину в диапазоне от мВт до кВт, максимальное напряжение - в диапазоне от мВ до кВ. При напряжении на лампе большем Vmax (в этот момент мощность, выделяющаяся в лампе, превышает Рmах) она перегорает. При этом изменяется изображение лампы (обрывается нить) и проводимость ее становится равной нулю.

 

 

Предохранитель разрывает цепь, если ток в ней превышает максимальный ток Imax. Значение Imax может иметь величину в диапазоне от мА до кА. В схемах, где используются источники переменного тока, Imax является максимальным мгновенным, а не действующим значением тока.

 

 

Ток через диод может протекать только в одном направлении - от анода А к катоду К. Состояние диода (проводящее или непроводящее) определяется полярностью приложенного к диоду напряжения.

 

Для стабилитрона (диода Зенера) рабочим является отрицательное напряжение. Обычно этот элемент используют для стабилизации напряжения.

 

Светодиод излучает видимый свет, когда проходящий через него ток превышает пороговую величину.

Мостовой выпрямитель предназначен для выпрямления переменного напряжения. При подаче на выпрямитель синусоидального напряжения среднее значение выпрямленного напряжения Vdc можно приблизительно вычислить по формуле:

,

где Vp – амплитудное значение синусоидального напряжения.

 

 

Диод Шоттки находится в отключенном состоянии до тех пор, пока напряжение на нем не превысит фиксированного уровня порогового напряжения.

 

 

У тиристора помимо анодного и катодного выводов имеется дополнительный вывод управляющего электрода. Он позволяет управлять моментом перехода прибора в проводящее состояние. Вентиль отпирается, когда ток управляющего электрода превысит пороговое значение, а к анодному выводу приложено положительное напряжение. Тиристор остается в открытом состоянии, пока к анодному выводу не будет приложено отрицательное напряжение.

 

Симистор способен проводить ток в двух направлениях. Он запирается при изменении полярности протекающего через него тока и отпирается при подаче следующего управляющего импульса.

 

 

Динистор - управляемый анодным напряжением двунаправленный переключатель. Динистор не проводит ток в до тех пор, пока напряжение на нем не. Когда напряжение, приложенное к динистору, превысит напряжение переключения, последний переходит в проводящее состояние и его сопротивление становится равным нулю.

 

 

Операционный усилитель (ОУ) - усилитель, предназначенный для работы с обратной связью. Он обычно имеет очень высокий коэффициент усиления по напряжению, высокое входное и низкое выходное сопротивление. Вход "+" является прямым, а вход "-" - инвертирующим. Модель операционного усилителя позволяет задавать параметры: коэффициент усиления, напряжение смещения, входные токи, входное и выходное сопротивления. Входные и выходные сигналы ОУ должны быть заданы относительно земли.

 

 

ОУ с пятью выводами имеет два дополнительных вывода (положительный и отрицательный) для подключения питания. Для моделирования этого усилителя используется модель Буля-Коха-Педерсона. В ней учитываются эффекты второго порядка, ограничение выходного напряжения и тока.

 

 

Умножитель перемножает два входных напряжения Vx и Vy. Выходное напряжение Vout рассчитывается по формуле:

.

где k - константа умножения, которая может устанавливаться пользователем.

Биполярные транзисторы.

Биполярные транзисторы являются усилительными устройствами, управляемыми током. Они бывают двух типов: p-n-p и n-p-n. Буквы означают тип проводимости полупроводникового материала, из которого изготовлен транзистор. В транзисторах обоих типов стрелкой отмечается эмиттер, направление стрелки указывает направление протекания тока.

 

 

Транзистор n-p-n имеет две области n-типа (коллектор к и эмиттер э) и одну область р-типа (база б).

Полевые транзисторы (FET)

Полевые транзисторы управляются напряжением на затворе, то есть ток, протекающий через транзистор, зависит от напряжения на затворе. Полевой транзистор включает в себя протяженную область полупроводника n-типа или р-типа, называемую каналом. Канал снабжен двумя электродами, которые называются истоком и стоком. Кроме канала n-или р-типа, полевой транзистор включает в себя область с противоположным каналу типом проводимости. Электрод, соединенный с этой областью, называют затвором. Для полевых транзисторов в Electronics Workbench выделено специальное поле компонентов FET. В программе имеются модели полевых транзисторов трех типов: транзисторов с управляющим р-n переходом (JFET) и двух типов транзисторов на основе металлооксидной пленки (МОП-транзисторы или MOSFET): МОП-транзисторы с встроенным каналом (Depletion MOSFETs) и МОП-транзисторы с индуцированным каналом (Enhancement MOSFETs).

Полевые транзисторы с управляющим р-n переходом (JFET)

Полевой транзистор с управляющим р-n переходом (JFET) – это униполярный транзистор, управляемый напряжением, в котором для управления током используется наведенное электрическое поле, зависящее от напряжения затвора. Для n-канального полевого транзистора с управляющим р-n переходом ток увеличивается с увеличением напряжения. В поле компонентов имеется два типа таких транзисторов: n-канальный и p-канальный.

Полевые транзисторы на основе металлооксидной пленки

Управление током, протекающим через полевой транзистор на основе металлооксидной пленки (МОП-транзистор или MOSFET), также осуществляется с помощью электрического поля, прикладываемого к затвору. Обычно подложка контактирует с наиболее отрицательно смещенным выводом транзистора, подключенным к истоку. В трехвыводных транзисторах подложка внутренне соединена с истоком. N-канальный транзистор имеет следующее обозначение: стрелка направлена внутрь значка; р-канальный транзистор имеет исходящую из значка стрелку. N-канальный и р-канальный МОП-транзисторы имеют различную полярность управляющих напряжений. В Electronics Workbench имеется 8 типов МОП-транзисторов: 4 типа МОП-транзисторов со встроенным каналом, 4 типа МОП-транзисторов с индуцированным каналом.

МОП-транзистор со встроенным каналом (Depletion MOSFETs)

Подобно полевым транзисторам с управляющим р-n переходом (JFET), МОП-транзистор со встроенным каналом состоит из протяженной области полупроводника, называемой каналом. Для р-канального транзистора эта область является полупроводником р-типа, для n-канального транзистора - n-типа. Металлический затвор МОП-транзистора изолирован от канала тонким слоем двуокиси кремния так, что ток затвора во время работы пренебрежимо мал. Ток стока n-канального транзистора определяется напряжением затвор-исток. С увеличением этого напряжения ток увеличивается, с уменьшением напряжения – уменьшается. При значении напряжения затвор-исток Vgs (off) канал полностью обеднен, и ток от истока к стоку прекращается. Напряжение Vgs (off) называется напряжением отсечки. С другой стороны, чем более положительно напряжение затвор-исток, тем больше размер канала, что приводит к увеличению тока. Р-канальный транзистор работает аналогично, но при противоположных полярностях напряжения.

 

МОП-транзисторы с индуцированным каналом

Эти МОП-транзисторы не имеют физического канала между истоком и стоком, как МОП-транзисторы со встроенным каналом. Вместо этого область проводимости может расширяться на весь слой двуокиси кремния. МОП-транзистор с индуцированным каналом работает только при положительном напряжении исток-затвор. Положительное напряжение исток-затвор, превышающее минимальное пороговое значение (Vto), создает инверсионный слой в области проводимости, смежной со слоем двуокиси кремния. Проводимость этого индуцированного канала увеличивается при увеличении положительного напряжения затвор-исток. МОП-транзисторы с индуцированным каналом используются преимущественно в цифровых схемах и схемах с высокой степенью интеграции (БИС).

– Конец работы –

Эта тема принадлежит разделу:

По учебной дисциплине электротехника и электроника

Программа electronics workbench возможности electronics workbench в библиотеки элементов.. базовые элементы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нелинейные элементы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Возможности Electronics Workbench
Программа Electronics Workbench позволяет моделировать аналоговые, цифровые и цифро-аналоговые схемы большой степени сложности. Имеющиеся в программе библиотеки включают в себя большой набор моделе

Элементы Electronics Workbench
Для операций с элементами электрических и электронных схем на общем поле Electronics Workbench выделены две области: панель элементов и поле элементов (рис. 1. 1). Панель элементов состоит из пикто

Источники
Все источники в Electronics Workbench идеальные. Внутреннее сопротивление идеального источника напряжения равно нулю, поэтому его выходное напряжение не зависит от нагрузки. При необходимости испол

Линейные элементы
  Сопротивление резистора измеряется в Омах и задается производными величинами (от Ом до МОм).  

Цифровые элементы
Цифровые элементы программы представлены следующими группами: индикаторы, логические элементы, узлы комбинационного типа, узлы последовательностного типа, гибридные элементы. Индикаторы

Узлы комбинационного типа
  Полусумматор производит сложение двух одноразрядных двоичных чисел. Он имеет два входа слагаемых: А, В и два выход

Триггеры
Триггер - простейший последовательный элемент с двумя состояниями, содержащий элементарную запоминающую ячейку и схему управления, которая изменяет состояние элементарной ячейки. Состояние триггера

Последовательностные устройства
Доступ к микросхемам счетчиков импульсов легко проследить по рисунку, приведенному ниже    

Гибридные компоненты
  Цифро-аналоговый преобразователь (ЦАП) осуществ

Установка значений элементов
  Простые аналоговые элементы, такие, как различные источники, конденсаторы, катушки индуктивности, резисторы, имеют один или несколько параметров. Сложные элементы имеют несколько вз

Приборы для проведения измерений
  Приборы для проведения измерений расположены в поле индикаторов (вольтметр и амперметр) и в поле приборов

Моделирование схем
  Исследуемая схема собирается на рабочем поле монитора при одновременном использовании мыши и клавиатуры. Применение в работе только клавиатуры невозможно. При построении и редактиро

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги