Принцип действия и устройство синхронного явнополюсного двигателя.

Характерный признак синхронного двигателя – вращение ротора с синхронной частотой

n1 =f160/p, независимо от нагрузки на валу. Поэтому синхронные двигатели используются в системах автоматики для приводов механизмов, требующих строго стабильной частоты вращения.

Синхронный двигатель, как и асинхронный, состоит из неподвижного статора и вращающегося ротора, разделенных воздушным зазором. Существуют конструктивные разновидности исполнения синхронных двигателей малой мощности, отличающихся устройством ротора:

- явнополюсные с электромагнитным возбуждением,

- явнополюсные с возбуждением постоянными магнитами,

- явнополюсные реактивные (с невозбужденным ротором),

- неявнополюсные гистерезисные.

Трехфазный синхронный двигатель имеет неявнополюсный статор с распределенной трехфазной обмоткой двигателя — явнополюсной конструкции с электромагнитным воз­буждением. При этом на полюсах ротора 2 располагают полюсные катушки 3 (рис. 1), которые при последова­тельном соединении об­разуют обмотку воз­буждения (ОВ). При подключении ОВ к ис­точнику постоянного тока возникает магнит­ный поток возбуждения ФВ, силовые линии ко­торого сцеплены с об­моткой статора 1. При включении обмотки ста­тора в трехфазную сеть создается вращающееся с синхронной частотой n1 магнитное поле с таким же числом полюсов, как на роторе. Благодаря взаимодействию полей статора и ротора возникает электромагнитный момент, вращающий ротор с синхронной частотой. В результате

Рис. 1

электрическая энер­гия сети преобразуется в механическую энергию вращения.

 

Рис. 2. Явнополюсный ротор (а) и пусковая обмотка (б) синхронного

двигателя

Предположим, что ротор двигателя вращается с частотой, отличающейся от частоты вращения поля статора, тогда в некоторые моменты времени возбужденные полюса ротора окажутся под одноименными полю­сами поля статора, возникнут силы магнитного отталкивания. Суммарный электромагнитный момент станет равным нулю и ротор остановится.

На рис. 2, а показана конструкция ротора синхрон­ного двигателя с явно выраженными полюсами. Ротор состоит из вала 1, на котором укреплены сердечники полюсов с полюсными катушками 3. Каждый сердечник. заканчивается полюсным наконечником 4. В полюсных наконечниках имеются пазы (рис. 2,б), в которых расположены стержни 1 пусковой обмотки, замкнутые с двух сторон кольцами 2. Для подключения вращаю­щейся обмотки возбуждения к источнику постоянного тока на валу ротора находятся два изолированных от вала и друг от друга контактных кольца 2 (рис. 2,а), по которым скользят щетки, вставленные в специальные щеткодержатели. От щеток сделаны выводы И1 и И2, через которые обмотка возбуждения соединяется с источником постоянного тока (рис. 3) и в цепи обмотки

 

Рис. 3. Электромагнитная схема синхронного двигателя

 

протекает ток возбуждения IB, который создает МДС FB = IBwB. В магнитопроводе двигателя появляется поток возбуждения Фв. В качестве источника постоянного тока
в синхронных двигателях обычно используют полупроводниковые выпрямительные устройства. Например, в двигателях средней и большой мощности применяют тири-
сторные возбудительные устройства. Подключение двигателя к трехфазной сети осуществляется через выводы обмотки статора С1, С2, СЗ.

 

2. Пуск синхронного двигателя с электромагнитным возбуждением

Синхронный двигатель при подключении его обмоток к источнику питания не развивает пускового момента. Ротор, по причине своей инерционности не может мгно­венно достичь частоты вращения, равной частоте враще­ния магнитного поля статора, которая устанавливается почти одновременно с включением обмотки статора в сеть. Поэтому между полюсами возбужденного ротора и вращающегося поля статора не возникает устойчи­вой магнитной связи, создающей синхронный вращаю­щий момент.

Для пуска синхронного двигателя необходимо пред­варительно привести ротор во вращение с частотой, близкой частоте вращения поля статора.

Существует несколько способов пуска синхронного двигателя, но практическое применение получил асин­хронный способ. Для его реализации в пазах полюсных наконечников ротора располагают стержни пусковой короткозамкнутой обмотки, выполненной аналогично об­мотке короткозамкнутого ротора. Обычно стержни этой обмотки делают из латуни или меди и за­мыкают с двух сторон медными кольцами (см. рис. 4, б) .

Для пуска синхронного двигателя с электромагнитным возбуждением замыкают обмотку возбуждения ОВ на резистор r (рис.4, а), подключают к трехфазной сети обмотку статора. Вращающееся поле статора на­водит в пусковой обмотке ЭДС, которая создает в стержнях обмотки токи. В результате взаимодействия этих токов с вращающимся полем статора на каждый стержень ротора действует электромагнитная сила FЭM (рис.4,б). Совокупность таких сил создает асинхронный электромагнитный момент Ма, под действием которого ротор начинает вращаться в ту же сторону, что и поле статора. После разгона ротора до частоты враще­ния, близкой к синхронной (n2 = 0,95n1), обмотку воз­буждения ОВ подключают к источнику постоянного тока. При этом двигатель возбуждается (полюса ротора на­магничиваются), между вращающимся полем статора и полюсами ротора устанавливается устойчивая магнитная связь, создающая синхронный электромагнитный мо­мент М, и двигатель втягивается в синхронизм, т. е. его ротор начинает вращаться синхронно с вращающимся магнитным полем. В пусковой обмотке ротора больше не наводится ЭДС, асинхронный момент равен Ма= 0.

 

 

 

 

Рис.4 Асинхронный пуск синхронного двигателя с электромагнитным возбуждением

 

С ростом нагрузки на валу двигателя вхождение в синхронизм затрудняется. Максимальный момент нагрузки на валу синхронного двигателя, при котором ротор еще втягивается в синхро­низм, называется моментом входа в синхронизм МВХ.

Не допускается пуск синхронного двигателя с под­ключенной к источнику постоянного тока обмоткой возбуждения, так как в этом случае магнитный поток возбуждения ФВ при разгоне ротора будет наводить в обмотке статора ЭДС. В результате взаимодействия проходящего на обмотке статора тока, вызванного этой ЭДС, с полем возбуждения возникает тормозящий мо­мент, ухудшающий пусковые свойства синхронного дви­гателя.

При пуске синхронного двигателя обмотку возбуж­дения следует замкнуть на резистор с активным сопро­тивлением r, примерно в 10 раз превышающим актив­ное сопротивление обмотки возбуждения. Если оставить обмотку возбуждения разомкнутой, то вращающееся поле статора, обгоняя ротор с большой скоростью, на­ведет в его обмотке значительную ЭДС, способную вы­звать пробой межвитковой изоляции обмотки возбуж­дения.

Потери и КПД.

Потери подразделяются на основные и добавочные. Основные потери складываются из магнитных РМ1 и электрических потерь РЭ1 в статоре, потерь на возбуждение и механических. Магнитные РМ1 и электрические потери РЭ1 и добавочные потери определяются также как и для асинхронных двигателей. Потери на возбуждение:

РВ= I2вrв+ΔUщIв

Где rв активное сопротивление обмотки возбуждения, приведенное к рабочей температуре, Ом; ΔUщ =2В - падение напряжения в щетках цепи возбуждения.

Механические потери PMex состоят из потерь на тре­ние в подшипниках и контактных кольцах и потерь на вентиляцию.

Суммарные потери в синхронном двигателе, Вт,

ΣР = Рм1 + РЭ1 + РВ + Рмех + Рдоб.

Коэффициент полезного действия синхронного двига­теля зависит от нагрузки на валу Р2 и коэффициента мощности cos φ1. Для синхронных двигателей мощностью до 100 кВт КПД при номинальной нагрузке составляет 80—90%.

Электромагнитный момент.Электромагнитная мощ­ность синхронного двигателя, Вт,

РЭМ= Р1 - ( РЭ1 М1)

затрачивается в основном на создание электромагнит­ного момента, Н·м,

Анализ (5.5) показывает, что электромагнитный мо­мент синхронного двигателя с явнополюсным ротором и электромагнитным возбуждением представляет собой сумму двух составляющих:

Основного момента Мосн,

Реактивного момента

МР