Векторная диаграмма асинхронного двигателя.

Так как фазы статора и ротора симметричны, векторную диаграмму строят для одной фазы двигателя. При вращающемся роторе частота тока в обмотке статора ƒ=50Гц во много раз превышает частоту тока в роторе. Это обстоятельство вызывает трудность для построения векторных диаграмм: ведь, как известно, векторные диаграммы строятся для электрических синусоидальных величин одной частоты. Можно построить векторную диаграмму для мастного случая, когда ротор неподвижен. Эта диаграмма будет аналогична диаграмме трансформатора, но по количественным соотношениям величин весьма существенно будет отличаться от диаграммы двигателя с вращающимся ротором. Возможно, построение векторной диаграммы отдельно для цепей статора и ротора. Однако на таких диаграммах не показано влияние механической нагрузки двигателя на его электрическое состояние. Наиболее целесообразным является построение векторной диаграммы двигателя с приведенным ротором. Энергетические соотношения в асинхронном двигателе таковы же, как и в трансформаторе. Для приведения тока ротора к частоте статора разделим уравнение

на скольжение s, тогда

здесь x2n - индуктивное сопротивление рассеяния при неподвижном роторе и пропорциональной частоте тока статора - приведенное активное сопротивление фазы ротора, во много раз превышает активное истинное сопротивление r2 (скольжение в рабочем режиме составляет 0.02 - 0.05).

Величину r2 удобней представить в виде суммы сопротивлений , где - добавочное сопротивление, значительно превышает сопротивление фазы обмотки и зависит от скольжения. Это сопротивление может моделировать механическую нагрузку на валу двигателя. В числителе преобразованного выражения имеем Е2n - ЭДС фазной обмотки ротора, приведенной к частоте статора, значительно превышает ЭДС вращающегося ротора. Таким образом, путем приведения частоты тока ротора к частоте статора, мы заменим передачу энергии посредством магнитного поля от статора к ротору и преобразования электромагнитной энергии в механическую простой трансформацией при неподвижном роторе. В условиях эквивалентного трансформатора обмотка ротора замкнута на добавочное сопротивление .

Для построения векторной диаграммы приведенного двигателя используют уравнения электрического состояния первичной и вторичной цепи

 

 

и уравнение баланса магнитно-движущихся сил. Магнитные поля статора и ротора неподвижны относительно друг друга и являются связывающим звеном между обмотками статора и ротора. Аналогично тому, как в трансформаторе энергия передается от первичной обмотки к вторичной, посредством магнитного поля, в асинхронной машине происходит передача энергии посредством вращающегося магнитного поля от статора к ротору. Как при неподвижном, так и при вращающемся роторе суммарная ЭДС. складывается из магнитно-движущихся сил токов статора и ротора. По аналогии с уравнением ЭДС для трансформатора, для асинхронной машины справедливо равенство 3w1kоб1I1+m2w2kоб2I2=3w1kоб1I1X

здесь w1 и w2 - число витков фазных обмоток статора и ротора,

kоб1 и kоб2- обмоточные коэффициенты, зависящие от размеров и конфигурации витков и их расположения в пазах в магнитопроводов статора и ротора,

m2- число фаз ротора.

Разделив уравнение на 3w1kоб1 получим

Величину и зависит от числа фаз статора и ротора, а так же от числа витков и обмоточных коэффициентов. Коэффициент привидения (или трансформации) ЭДС и напряжения kl1 будем считать отношение ЭДС статора и ротора при неподвижном роторе, так как E1=C1Eƒ1Φ; E2=C2Eƒ2Φ

 

kl1 зависит, как видно, от конструктивных особенностей обмоток статора и ротора, главным образом числа витков, числа фаз и обмоточного коэффициента. Для построения схемы замещения преобразуем основные уравнения для двигателя. Для цепи ротора имеем выражение

 

 

Рис. 6.14

 

 

ЭДС связаны соотношением:

тогда

ЭДС пропорционально намагниченному току İ1x, и по аналогии с трансформатором - Ė1=Z12×İ1x[**],

где Z12- величина, моделирующая магнитную цепь машины и имеющая размерность сопротивления.

Для цепи статора Ů1=- Ė11Z1. Заменив - Е один раз [*], а другой [**] получим

Таким образом, имеем систему уравнений, описывающих электрическое состояние цепи статора и ротора, и магнитное состояние машины.

 

На основании этих уравнений строим схему замещения (рис.3.14.) На схеме элементы r1,x1- соответствуют активному и индуктивному сопротивлениям фазы статора.

r2’, x2 - моделируют цепь фазы ротора

r12, x12 - магнитную цепь двигателя

При холостом ходе I2=0, при этом n=n0 и s = 0, тогда

При коротком замыкании и s =1 - ротор заторможен. В опыте короткого замыкания U1«U1n.