рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

В.2. Электрические машины — электромеханические преобразователи энергии

В.2. Электрические машины — электромеханические преобразователи энергии - раздел Электротехника, В.1. Назначение электрических машин и трансформаторов Изучение Электрических Машин Основано На Знаниях Физической Сущности Электрич...

Изучение электрических машин основано на знаниях физической сущности электрических и магнитных явлений, излагаемых в курсе теоретических основ электротехники. Однако прежде чем приступить к изучению курса «Электрические машины», напомним физический смысл некоторых законов и явлений, лежащих в основе принципа действия электрических машин, в первую очередь закона электромагнитной индукции.

Рис. В.1. К понятиям об «элементарном генераторе» (а) и «элементарном двигателе» (б)

В процессе работы электрической машины в режиме генератора происходит преобразование механической энергии в электрическую. Природа этого процесса объясняется законом электромагнитной индукции: если внешней силой F воздействовать на помещенный в магнитное поле проводник и перемещать его (рис. В.1, а), например, слева направо перпендикулярно вектору индукции В магнитного поля со скоростью u, то в проводнике будет наводиться электродвижущая сила (ЭДС)

E=Blv, (B.1)

где Вмагнитная индукция, Тл; l — активная длина проводника, т. е. длина его части, находящейся в магнитном поле, м; uскорость движения проводника, м/с.

Рис. В.2. Правила «правой руки» и «левой руки»

Для определения направления ЭДС следует воспользоваться правилом «правой руки» (рис. В.2, а). Применив это правило, определим направление ЭДС в проводнике (от нас). Если концы проводника замкнуты на внешнее сопротивление R (потребитель), то под действием ЭДС в проводнике возникнет ток такого же направления. Таким образом, проводник в магнитном поле можно рассматривать в этом случае как элементарный генератор.

В результате взаимодействия тока I с магнитным полем возникает действующая на проводник электромагнитная сила

FЭМ = BlI. (В.2)

Направление силы FЭМ можно определить по правилу «левой руки» (рис. В.2, б). В рассматриваемом случае эта сила направлена справа налево, т.е. противоположно движению проводника. Таким образом, в рассматриваемом элементарном генераторе сила FЭМ является тормозящей по отношению к движущей силе F.

При равномерном движении проводника F = FЭМ. Умножив обе части равенства на скорость движения проводника, получим

Fu = FЭМu

Подставим в это выражение значение FЭМ из (В.2):

Fu = BlIu = EI (В.З)

Левая часть равенства определяет значение механической мощности, затрачиваемой на перемещение проводника в магнитном поле; правая часть — значение электрической мощности, развиваемой в замкнутом контуре электрическим током I. Знак равенства между этими частями показывает, что в генераторе механическая мощность, затрачиваемая внешней силой, преобразуется в электрическую.

Если внешнюю силу F к проводнику не прикладывать, а от источника электроэнергии подвести к нему напряжение U так, чтобы ток I в проводнике имел направление, указанное на рис. В.1, б, то на проводник будет действовать только электромагнитная сила FЭМ. Под действием этой силы проводник начнет двигаться в магнитном поле. При этом в проводнике индуцируется ЭДС с направлением, противоположным напряжению U. Таким образом, часть напряжения U, приложенного к проводнику, уравновешивается ЭДС Е, наведенной в этом проводнике, а другая часть составляет падение напряжения в проводнике:

U = E + Ir, (В.4 )

где rэлектрическое сопротивление проводника.

Умножим обе части равенства на ток I:

UI = ЕI + I2r.

Подставляя вместо Е значение ЭДС из (В.1), получим

UI =BluI + I 2r,

или, согласно (В.2),

UI = FЭМ u + I 2r. (В.5)

Из этого равенства следует, что электрическая мощность (UI), поступающая в проводник, частично преобразуется в механическую (FЭМu), а частично расходуется на покрытие электрических потерь в проводнике (I2r). Следовательно, проводник с током, помещенный в магнитном поле, можно рассматривать как элементарный электродвигатель.

Рассмотренные явления позволяют сделать вывод: а) для любой электрической машины обязательно наличие электропроводящей среды (проводников) и магнитного поля, имеющих возможность взаимного перемещения; б) при работе электрической машины как в режиме генератора, так и в режиме двигателя одновременно наблюдаются индуцирование ЭДС в проводнике, пересекающем магнитное поле, и возникновение силы, действующей на проводник, находящийся в магнитном поле, при протекании по нему электрического тока; в) взаимное преобразование механической и электрической энергий в электрической машине может происходить в любом направлении, т.е. одна и та же электрическая машина может работать как в режиме двигателя, так и в режиме генератора; это свойство электрических машин называют обратимостью. Принцип обратимости электрических машин был впервые установлен русским ученым Э. X. Ленцем.

Рассмотренные «элементарные» электрические генератор и двигатель отражают лишь принцип использования в них основных законов и явлений электрического тока. Что же касается конструктивного исполнения, то большинство электрических машин построено на принципе вращательного движения их подвижной части. Несмотря на большое разнообразие конструкций электрических машин, оказывается возможным представить себе некоторую обобщенную конструкцию электрической машины. Такая конструкция (рис. В.З) состоит из неподвижной части 1, называемой статором, и вращающейся части 2, называемой ротором. Ротор располагается в расточке статора и отделен от него воздушным зазором. Одна из указанных частей машины снабжена элементами, возбуждающими в машине магнитное поле (например, электромагнит или постоянный магнит), а другая — имеет обмотку, которую будем условно называть рабочей обмоткой машины. Как неподвижная часть машины (статор), так и подвижная (ротор) имеют сердечники, выполненные из магнитно-мягкого материала и обладающие небольшим магнитным сопротивлением.

Рис. В.З. Обобщенная конструктивная схема электрической машины

Если электрическая машина работает в режиме генератора, то при вращении ротора (под действием приводного двигателя) в проводниках рабочей обмотки наводится ЭДС и при подключении потребителя появляется электрический ток. При этом механическая энергия приводного двигателя преобразуется в электрическую. Если машина предназначена для работы в качестве электродвигателя, то рабочая обмотка машины подключается к сети. При этом ток, возникший в проводниках обмотки, взаимодействует с магнитным полем и на роторе возникают электромагнитные силы, приводящие ротор во вращение. При этом электрическая энергия, потребляемая двигателем из сети, преобразуется в механическую энергию, затрачиваемую на вращение какого-либо механизма, станка и т. п.

Возможны также конструкции электрических машин, у которых рабочая обмотка расположена на статоре, а элементы, возбуждающие магнитное поле, — на роторе. Принцип работы машины при этом остается прежним.

Диапазон мощностей электрических машин весьма широк — от долей ватт до сотен тысяч киловатт.

 

– Конец работы –

Эта тема принадлежит разделу:

В.1. Назначение электрических машин и трансформаторов

В З Классификация электрических машин... Использование электрических машин в качестве генераторов и двигателей является... Электрические машины используют также для усиления мощности электрических сигналов Такие электрические машины...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: В.2. Электрические машины — электромеханические преобразователи энергии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

В.1. Назначение электрических машин и трансформаторов
Электрификация — это широкое внедрение в промышленность, сельское хозяйство, транспорт и быт электрической энергии, вырабатываемой на мощных электростанциях, объединенных высоковольтными электричес

ТРАНСФОРМАТОРЫ
  · Рабочий процесс трансформатора · Группы соединения обмоток и параллельная работа трансформаторов · Трехобмоточные транс

Назначение и области применения трансформаторов
Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитн

Принцип действия трансформаторов
Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферромагнитного материала (обычно листовая электротехническая сталь), и двух обмоток, расположенных на стерж

Устройство трансформаторов
Современный трансформатор состоит из различных конструктивных элементов: магнитопровода, обмоток, вводов, бака и др. Магнитопровод с насаженными на его стержни обмотками составляет активную част

Уравнения напряжений трансформатора
Основной переменный магнитный поток Ф в магнитопроводе трансформатора, сцепляясь с витками обмоток w1 и w2 (см. рис. 1.1), наводит в них ЭДС [см. (1.1) и (1.2)]

Уравнения магнитодвижущих сил и токов
Предположим, что трансформатор работает в режиме холостого хода (рис.1.15, а), т.е. к зажимам его первичной обмотки подведено напряжение U1, а вторичная обмотка разомкнута (U

Векторная диаграмма трансформатора
Воспользовавшись схемой замещения приведенного трансформатора и основными уравнениями напряжений и токов (1.34), построим векторную диаграмму трансформатора, наглядно показывающую соотношения и фаз

Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б) Трансформирование трехфазной системы напряжений мож

Явления при намагничивании магнитопроводов трансформаторов
Допустим, что к первичной обмотке трансформатора подведено синусоидальное напряжение. При этом поток в магнитопроводе также будет синусоидальным: Ф = Фmах sinωt. Однако вследствие н

Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
Из уравнений токов третьей гармоники в трехфазной системе (1.37) видно, что эти токи в любой момент времени совпадают по

Опытное определение параметров схемы замещения трансформаторов
Полученная в § 1.6 электрическая схема замещения (см. рис. 1.18, б) позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при опреде

Упрощенная векторная диаграмма трансформатора
Векторная диаграмма нагруженного трансформатора (см. рис. 1.19) наглядно показывает соотношение между параметрами трансформатора. Из-за сложности эта диаграмма не может быть использована для практи

Внешняя характеристика трансформатора
При колебаниях нагрузки трансформатора его вторичное напряжение меняется. В этом можно убедится, воспользовавшись упрощенной схемой замещени

Потери и КПД трансформатора
В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Потери в трансформаторе разделяются на электрические и магнитные. Электрическ

Регулирование напряжения трансформаторов
Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего но

Группы соединения обмоток
Рис. 2.1. Группы соединения обмоток однофазных трансформаторов: а — группа I/I — 0; б — группа I/I — 6 До

Параллельная работа трансформаторов
Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллельном соеди

Трехобмоточные трансформаторы
В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки

Автотрансформаторы
Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме

Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
При переходе трансформатора из одного уста­новившегося режима в другой возникают переход­ные процессы. Так как каждый установившийся режим характеризуется определенным значением энергии электромагн

Перенапряжения в трансформаторах и защита от перенапряжений
  В нормальных условиях эксплуатации трансформатора между отдельными частями его обмоток, а также между обмотками и заземленными магнитопроводом и корпусом действуют синусоидальные на

Трансформаторы с плавным регулированием напряжения
  Для плавного регулирования напряжения возможно применение скользящих по поверхности витков обмотки контактов, аналогично тому, как это сделано в регулировочном автотрансформаторе (с

Трансформаторы для выпрямительных установок
  Во вторичные обмотки этих трансформаторов включены вентили — устройства, обладающие односторонней проводимостью. Рассмотрим работу однофазного трансформатора в схеме одн

Трансформаторы для автоматических устройств
  Импульсные трансформаторы. Применяются в устройствах импульсной техники для изменения амплитуды импульсов, исключения постоянной составляющей, размножения импульсов и т. п. Одно из

Трансформаторы для дуговой электросварки
  Трансформатор для дуговой электросварки, обычно называемый сварочным трансформатором, представляет собой однофазный двухобмоточный понижающий трансформатор, преобразующий напряжение

Охлаждение трансформаторов
  Отсутствие у трансформаторов вращающихся частей уменьшает нагрев трансформатора из-за отсутствия механических по­терь, но это же обстоятельство усложняет процесс охлаждения, так как

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги