рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Перенапряжения в трансформаторах и защита от перенапряжений

Перенапряжения в трансформаторах и защита от перенапряжений - раздел Электротехника, Назначение электрических машин и трансформаторов   В Нормальных Условиях Эксплуатации Трансформатора Между Отдел...

 

В нормальных условиях эксплуатации трансформатора между отдельными частями его обмоток, а также между обмотками и заземленными магнитопроводом и корпусом действуют синусоидальные напряжения номинальной частоты, не представляющие опасности для электрической изоляции. Однако периодически возникают условия, при которых между указанными элементами трансформатора появляются перенапряжения. В зависимости от причин, их порождающих, перенапряжения разделяются на два вида: внутренние и внешние.

Внутренние перенапряжения.Возникают либо в процессе коммутационных операций, например отключения или включения трансформатора, либо» в результате аварийных процессов (корот­кое замыкание, дуговые замыкания на землю и др.). Значение внутреннего перенапряжения обычно составляет (2,5 ¸ 3,5)UНОМ.

Внешние (атмосферные) перенапряжения.Обусловлены атмосферными разрядами: либо прямыми ударами молний в провода или опоры линий электропередач, либо грозовыми разрядами, индуцирующими в проводах линии электромагнитные волны высокого напряжения:. Значение перенапряжения в этом случае может достигать нескольких тысяч киловольт.

Рис. 4.4. Схемы замещения обмоток трансформатора

На процессы, происходящие в трансформаторе при перенапряжениях, существенное влияние оказывает скорость нарастания волны напряжения. При подходе волны напряжения к трансформатору напряжение между зажимом обмотки и землей нарастает весьма быстро. При этом скорость нарастания напряжения в зна­чительной степени влияет на вид схемы замещения обмотки. При напряжении промышленной частоты схема замещения обмотки имеет вид ряда после последовательно соединенных индуктивных и активных сопротивлений элементов этой обмотки (рис. 4.4, а). При подходе к трансформатору периодической волны перенапряжения, вызванной коммутационными процессами, скорость нарастания напряжения настолько увеличивается, что на процессы, происхо­дящие в трансформаторе, оказывают влияние емкостные связи между элементами обмотки и между обмоткой и заземленным магнитопроводом (рис. 4.4, 6). Наконец, при атмосферных перенапряжениях, когда к трансформатору устремляется апериодический импульс с крутым передним фронтом ПФ (рис. 4.5), при котором напряжение между вводом трансформатора и землей достигает наибольшего значения за (1—2)-10-6 с, индуктивные сопротивления в схеме замещеюия становятся настолько большими, что их влиянием можно пренебречь и считать схему замещения обмотки состоящей только из поперечных емкостей между элементом обмотки и магнитопровюдом (землей) Сq и продольных емкостей между смежными элементами обмотки Cd (рис. 4.4, в).

Рис. 4.5. Перенапряжение в виде импульса

Рассмотрим подробнее процессы в трансформаторе при атмосферных перенапряжениях, так как эти перенапряжения наиболее опасны. Обмотка в этом случае по отношению к быстро нарастающему напряжению представляет собой некоторую входную емкость СВХ, которая обусловливает входное (емкостное) сопротивление трансформатора хвх. В начальный момент подхода волны, когда скорость нарастания напряжения огромна (du/dt® ¥), входное сопротивление практически равно нулю (хвх ®0), т. е. трансформатор эквивалентен короткозамкнутому концу линии передачи. При этом напряжение на входе трансформатора сна­чала падает до нуля, затем, по мере зарядки емкости СВХ, повышается и достигает двукратной величины ам­плитуды импульса, а волна напряжения отражается от трансформатора. В этот период трансформатор эквивалентен разомкнутому концу линии передачи (рис. 4.6). Напряжение, возникающее меж­ду обмоткой и магнитопроводом (землей), создает токи через поперечные емкости Cq, при этом токи в продольных емкостях Сd по мере приближения к концу обмотки (точка X на рис. 4.4) уменьшаются. Это приводит к неравномерному распределению напря­жения вдоль обмотки. Характер начального распределения напряжения вдоль обмотки зависит от двух причин: от состояния нейтральной точки трансформатора (это точка X, которая заземлена на рис. 4.7, а и изолирована на рис. 4.7, б) и от соотношения емкостей Сq и Cd, определяемого коэффициентом

Рис. 4.6. Подход (а) и отражение (б) волны напряжения при атмосферном перенапряжении трансформатора

 

(4.4).

При a ≥ 5, что соответствует реальным трансформаторам, начальное распределение напряжения не зависит от состояния нейтральной точки и весьма неравномерно, достигая максимального значения на начальных элементах обмотки. Это соз­дает опасность для изоляции между начальными элементами обмотки. При уменьшении а распределение напряжения вдоль обмотки становится более равномерным, особенно при зазем­ленной нейтрали, хотя наибольшее значение напряжения остается неизменным.

Через некоторое время после подхода волны к обмотке все обмотки приобретут установившийся потенциал. При распределение напряжения вдоль обмотки, называемое конечным, будет соответствовать кривым при a = 0, показания рис. 4.7.

4.7. Начальное распределение напряжения подлине обмотки при заземленной (а) и изолированной (б) нейтралях

Следовательно, между начальным и конечным распределением напряжением имеет место переходный процесс, связанный с затухающими электромагнитными колебаниями, обусловленными индуктивностью, емкостью и активным сопротивлением обмотки. За время переходного процесса напряжение каждой точки обмотки меняется и в отдельные моменты времени достигает значений, превышающих наибольшее его значение при начальном распределении напряжения. На рис. 4.8 представлена кривая изменения напряжения точки А (см. рис. 4.7, а) обмотки за время переходного процесса. Затухающий характер кривой обусловлен потерями в активном сопротивлении обмотки.

Рис. 4.8. Изменение потенциала одной точки обмотки трансформатора относительно земли в течение переходного процесса

Наибольшее напряжение возникает на изолированном конце обмотки (точка X при изолированной нейтрали) и может достигать значения uX = 1,9U, где U— максимальное напряжение на обмотке при начальном распределении напряжения. Таким образом, .наибольшую опасность для изоляции обмотки (межвитковой и относительно земли представляет собой переходный колебательный процесс.

В автотрансформаторах из-за наличия электрической связи между первичной и вторичной цепями возможна передача волн напряжения из одной сети в другую со значительным усилением их по амплитуде.

К мерам по защите трансформаторов от перенапряжений относятся внешняя защита — применение заземленных тросов и вентильных разрядников (эти меры позволяют ограничить амплитуду волн напряжения, подходящих к трансформатору) и внутренняя защита — усиление изоляции входных витков; установка емкостных колец и электростатических экранов (емкостная компенсация); применение обмоток с пониженным значением коэффициента a [см. (4.4)]. Цель последних двух мероприятий внутренней защиты сводится к сближению начального и конечного распределения напряжения. При этом практически устраняется переходный колебательный процесс.

Емкостные кольца представляют собой разомкнутые шайбообразные экраны, изготовляемые из металлизированного электрокартона. Этими кольцами прикрывают начало и конец обмотки, тем самым под­нимают кривую начального распределения напряжения, приближая ее к кривой конечного распределения.

Уменьшение неравномерности начального распределе­ния напряжения и сближение его с конечным распределением достигаются применением в трансформаторах дополнительных электростатических экранов в виде разомкнутых металлических колец (витков), охватывающих начальную часть обмотки и соединенных с ее вводом. Такой экран создает дополнительные емкости СЭ, через которые заряжаются поперечные емкости Сq в обход продольных емкостей Cd (рис. 4.9, а).

Рис. 4.9. Роль электростатического экрана

В результате кривая начального распределения напряжения 1 (рис. 4.9, 6) значительно спрямляется и становится почти такой же, как и кривая конечного распределения 2 для обмоток с заземленной нейтралью.

Трансформаторы с изолированной нейтралью также могут снабжаться электростатическими экранами, но в этом случае применяют специальные устройства — импидоры, включаемые между нейтралью и землей. Это устройство содержит емкость, включен­ную параллельно разряднику и реактору, которая при волновых процессах заземляет нейтраль трансформатора, а при промышленной частоте имеет большое сопротивление и практически изолирует нейтраль.

 

– Конец работы –

Эта тема принадлежит разделу:

Назначение электрических машин и трансформаторов

В З Классификация электрических машин.. Использование электрических машин в качестве генераторов и двигателей является.. Электрические машины используют также для усиления мощности электрических сигналов Такие электрические машины..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Перенапряжения в трансформаторах и защита от перенапряжений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

В.1. Назначение электрических машин и трансформаторов
Электрификация — это широкое внедрение в промышленность, сельское хозяйство, транспорт и быт электрической энергии, вырабатываемой на мощных электростанциях, объединенных высоковольтными электричес

В.2. Электрические машины — электромеханические преобразователи энергии
Изучение электрических машин основано на знаниях физической сущности электрических и магнитных явлений, излагаемых в курсе теоретических основ электротехники. Однако прежде чем приступить к изучени

ТРАНСФОРМАТОРЫ
  · Рабочий процесс трансформатора · Группы соединения обмоток и параллельная работа трансформаторов · Трехобмоточные транс

Назначение и области применения трансформаторов
Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитн

Принцип действия трансформаторов
Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферромагнитного материала (обычно листовая электротехническая сталь), и двух обмоток, расположенных на стерж

Устройство трансформаторов
Современный трансформатор состоит из различных конструктивных элементов: магнитопровода, обмоток, вводов, бака и др. Магнитопровод с насаженными на его стержни обмотками составляет активную част

Уравнения напряжений трансформатора
Основной переменный магнитный поток Ф в магнитопроводе трансформатора, сцепляясь с витками обмоток w1 и w2 (см. рис. 1.1), наводит в них ЭДС [см. (1.1) и (1.2)]

Уравнения магнитодвижущих сил и токов
Предположим, что трансформатор работает в режиме холостого хода (рис.1.15, а), т.е. к зажимам его первичной обмотки подведено напряжение U1, а вторичная обмотка разомкнута (U

Векторная диаграмма трансформатора
Воспользовавшись схемой замещения приведенного трансформатора и основными уравнениями напряжений и токов (1.34), построим векторную диаграмму трансформатора, наглядно показывающую соотношения и фаз

Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б) Трансформирование трехфазной системы напряжений мож

Явления при намагничивании магнитопроводов трансформаторов
Допустим, что к первичной обмотке трансформатора подведено синусоидальное напряжение. При этом поток в магнитопроводе также будет синусоидальным: Ф = Фmах sinωt. Однако вследствие н

Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
Из уравнений токов третьей гармоники в трехфазной системе (1.37) видно, что эти токи в любой момент времени совпадают по

Опытное определение параметров схемы замещения трансформаторов
Полученная в § 1.6 электрическая схема замещения (см. рис. 1.18, б) позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при опреде

Упрощенная векторная диаграмма трансформатора
Векторная диаграмма нагруженного трансформатора (см. рис. 1.19) наглядно показывает соотношение между параметрами трансформатора. Из-за сложности эта диаграмма не может быть использована для практи

Внешняя характеристика трансформатора
При колебаниях нагрузки трансформатора его вторичное напряжение меняется. В этом можно убедится, воспользовавшись упрощенной схемой замещени

Потери и КПД трансформатора
В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Потери в трансформаторе разделяются на электрические и магнитные. Электрическ

Регулирование напряжения трансформаторов
Обмотки ВН понижающих трансформаторов снабжают регулировочными ответвлениями, с помощью которых можно получить коэффициент трансформации, несколько отличающийся от номинального, соответствующего но

Группы соединения обмоток
Рис. 2.1. Группы соединения обмоток однофазных трансформаторов: а — группа I/I — 0; б — группа I/I — 6 До

Параллельная работа трансформаторов
Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллельном соеди

Трехобмоточные трансформаторы
В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки

Автотрансформаторы
Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме

Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
При переходе трансформатора из одного уста­новившегося режима в другой возникают переход­ные процессы. Так как каждый установившийся режим характеризуется определенным значением энергии электромагн

Трансформаторы с плавным регулированием напряжения
  Для плавного регулирования напряжения возможно применение скользящих по поверхности витков обмотки контактов, аналогично тому, как это сделано в регулировочном автотрансформаторе (с

Трансформаторы для выпрямительных установок
  Во вторичные обмотки этих трансформаторов включены вентили — устройства, обладающие односторонней проводимостью. Рассмотрим работу однофазного трансформатора в схеме одн

Трансформаторы для автоматических устройств
  Импульсные трансформаторы. Применяются в устройствах импульсной техники для изменения амплитуды импульсов, исключения постоянной составляющей, размножения импульсов и т. п. Одно из

Трансформаторы для дуговой электросварки
  Трансформатор для дуговой электросварки, обычно называемый сварочным трансформатором, представляет собой однофазный двухобмоточный понижающий трансформатор, преобразующий напряжение

Охлаждение трансформаторов
  Отсутствие у трансформаторов вращающихся частей уменьшает нагрев трансформатора из-за отсутствия механических по­терь, но это же обстоятельство усложняет процесс охлаждения, так как

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги