Определение величины и знака встроенного заряда

Для определения величины и знака встроенного в диэлектрик МДП‑структуры заряда обычно пользуются высокочастотным методом ВФХ. Для этого, зная толщину подзатворного диэлектрика dox, концентрацию легирующей примеси NA и работу выхода материала затвора, рассчитывают согласно (3.101) и (3.58) теоретическое значение емкости плоских зон CFB МДП-структуры и напряжения плоских зон VFB = Δφms. Поскольку экспериментальная CV кривая высокочастотная, т.е. , то, проводя сечение C = const = CFB (теор.), мы получаем при пересечении этой кривой с экспериментальной ВФХ напряжение, соответствующее ψs = 0, т.е. экспериментальное напряжение плоских зон VFB (эксп.). При этом, согласно (3.83),

. (3.113)

Если Qox, Qss > 0, то VFB (эксп.) > VFB (теор.), и наоборот, если Qox, Qss < 0, то VFB (эксп.) < VFB (теор.).

Таким образом, знак и величина суммарного заряда в плоских зонах определяются соотношением (3.113) однозначно. Для вычленения заряда в поверхностных состояниях воспользуемся тем, что он обусловлен основными носителями (p‑тип, Qss(ψs = 0) > 0 и n‑тип, Qss(ψs = 0) < 0), захваченными на поверхностные состояния. Зная величину Nss, можно рассчитать величину заряда в поверностных состояниях Qss и таким образом из (3.83) определить величину и знак встроенного в диэлектрик заряда Qox.

3.6.6. Определение плотности поверхностных состояний на границе раздела полупроводник – диэлектрик

Методы вольт‑фарадных характеристик дают несколько возможностей для определения величины и функции распределения плотности поверхностных состояний в запрещенной зоне полупроводника на границе раздела полупроводник – диэлектрик. Рассмотрим более подробно эти методы.