Поле заряда, расположенного под границей двух диэлектриков

Рассмотрим случай экранировки зарядов на рисунке 3.24. Заряд q0 расположен в среде I с диэлектрической постоянной ε = ε1. Требуется найти поле, создаваемое зарядом q0 в среде II с диэлектрической постоянной ε = ε2. Оказывается, что в общем случае невозможно подобрать систему зарядов, которые бы давали одновременно правильное значение поля и потенциала одновременно в обеих средах I и II. Поэтому поле в среде I будем искать как поле двух зарядов q1 и q2, а поле в среде II – как поле заряда q3, расположенного в той же точке, что и заряд q1. Конечно, физически существует только заряд q0, поле и потенциалы в средах I и II получаются из-за поляризации диэлектриков. Однако оказывается, что подход с введением фиктивных зарядов q1, q2 и q3 удобен и позволяет правильно рассчитывать распределение полей и потенциалов в сложных слоистых системах. Выберем величину заряда q2 = -αq1, разницу в величинах ε1, ε2 включим в множитель α. Тогда получим выражения для нормальной (En) и тангенциальной (Eτ) составляющих электрического поля, изображенных на рисунке 3.24.

Рис. 3.24. Схема, поясняющая экранировку зарядов границей раздела двух диэлектриков

Сверху границы в области I, где поле определяется зарядами q1 и q2, находящимися на на расстоянии τ от границы в среде с диэлектрической проницаемостью ε1,

,

. (3.137)

Снизу границы в области II, где поле определяется зарядом q3 в среде с ε1,

,

. (3.138)

Используя условие постоянства на границе двух диэлектрических сред тангенциальной составляющей напряженности электрического поля и нормальной составляющей индукции электрического поля , получаем:

,

, (3.139)

где .

Отсюда следует, что

. (3.140)

Таким образом, для правильного рассмотрения электрического поля и потенциала, создаваемого зарядом q0 в среде I с ε1 и находящегося под границей со средой II с ε2, необходимо при расчете поля в среде I с диэлектрической постоянной ε1 пользоваться зарядами q1 и q2, расположенными равноудаленно от границы раздела. Величина q2 = -αq1, где α приведена в (3.140). Для расчета поля в среде II с диэлектрической постоянной ε2 необходимо пользоваться зарядом q3 = βq1, расположенным на месте заряда q1 в среде I с диэлектрической постоянной ε1.

 

Потенциал заряда в МДП‑структуре

Рассмотрим случай, когда точечный заряд находится на границе раздела окисел – полупроводник. Экранировка происходит только затвором структуры (слабая инверсия, низкая плотность поверхностных состояний, стандартное легирование). На рисунке 3.25 изображена возникшая ситуация. Рассмотрим случай, когда нужно сначала рассмотреть поле в окисле структуры. Заряд q, находящийся на границе, отразится зеркально затвором -q, но в этом случае заряд -q – это заряд над границей двух диэлектриков. Из-за поляризации для получения правильного поля в окисле необходимо ввести заряд αq, находящийся по другую сторону на таком же расстоянии от границы раздела. Этот заряд αq в свою очередь снова отразится в затворе и даст заряд -αq. Таким образом, правильное поле в окисле в случае трехслойной МДП‑системы получается только при бесконечном наборе зарядов слева и справа от границы раздела.

Для расчета поля и потенциала в полупроводнике все заряды слева на рисунке 3.25 мы должны уменьшить в β раз согласно предыдущему рассмотрению. Следовательно, величина поля и потенциала в полупроводнике МДП‑структуры обусловлена суммой зарядов +q и противоположного по знаку -βq, +βαq, -βα2q и т.д., отстоящих на расстояние 2dox, 4dox, 6dox, 8dox от границы раздела окисел – полупроводник.

Рис. 3.25. Схема зарядов, необходимая для расчета электрического поля и потенциала МДП‑структуры:

а) в диэлектрике; б) в полупроводнике

Условие электронейтральности соблюдено, заряд слева и справа суммарно равны между собой. Поскольку мы предположили, что заряд находится на границе раздела окисел-полупроводник, то

.

Таким образом, потенциал, создаваемый в полупроводнике точечным зарядом, находящимся на границе окисел – полупроводник при экранировке затвором МДП‑структуры, на расстоянии λ вглубь и ρ в плоскости границы раздела можно вписать в виде потенциала распределенного диполя:

. (3.141)

В случае равенства диэлектрических постоянных полупроводника и диэлектрика ε1 = ε2 = ε*, β = 1, α = 0 получаем потенциал простого диполя:

. (3.142)

Как следует из соотношений (3.141) и (3.142), различие в потенциалах простого и рассредоточенного диполя будет проявляться при высоких различиях в диэлектрических постоянных окисла и полупроводника, большой толщине диэлектрика dox, высоких значениях (по сравнению с толщиной окисла) расстояния вглубь полупроводника λ, где рассчитывается потенциал.

3.7.5. Потенциальный рельеф в МДП‑структуре при дискретности элементарного заряда

Для нахождения вида потенциального рельефа в МДП‑структуре воспользуемся методом математического моделирования. Для этого, используя датчик случайных чисел, на площадке S, соответствующей в случае МДП‑структуры границе раздела полупроводник – диэлектрик, разбрасываются N единичных точечных зарядов со средней плотностью . Потенциал каждого заряда рассчитывается с учетом экранировки затвором МДП‑структуры по уравнению (3.141). Как и прежде, предполагается, что реализовано условие слабой инверсии или обеднения и толщина подзатворного диэлектрика dox меньше ширины ОПЗ.

Для нахождения вида потенциального рельефа потенциалы всех зарядов суммировались и из полученного значения вычиталось среднее значение величины поверхностного потенциала , соответствующее квазинепрерывному и равномерному распределению встроенного заряда со средней плотностью .

На рисунке 3.26 приведена полученная таким образом картина потенциального рельефа. Из рисунка видно, что потенциальный рельеф негладкий, на нем имеются «озера» – участки со значительно меньшим уровнем поверхностного потенциала, «горные хребты» – участки со значительно большим уровнем поверхностного потенциала и, наконец, «долины» – области, где поверхностный потенциал близок к среднему. На приведенной шкале пространственного масштаба видно, что характерный размер областей «озер» и «горных хребтов» составляет порядка 500 Å при толщине диэлектрика dox в МДП‑структуре dox = 50 Å.

Рис. 3.26. Форма потенциального рельефа в МДП‑структуре в области слабой инверсии. Сплошные линии соответствуют отклонению потенциала ψs от среднего значения на величину среднеквадратичной флуктуации σψ. Точки соответствуют местам расположения зарядов

На рисунке 3.27 приведена зависимость поверхностного потенциала ψs от координаты y вдоль границы раздела полупроводник – диэлектрик, рассчитанная для случая, приведенного на рисунке 3.26. Из данного рисунка также видно, что зависимость потенциала ψs от координаты является немонотонной функцией.

Рис. 3.27. Зависимость потенциала ψs от координаты y вдоль поверхности

Таким образом, дискретность и случайный характер расположения в плоскости границы раздела полупроводник – диэлектрик встроенного заряда вызывают флуктуации относительного среднего значения величины поверхностного потенциала.