Пространственный масштаб статистических флуктуаций

Рассмотрим, какой характерный пространственный масштаб имеют статистические флуктуации поверхностного потенциала в МДП‑структурах. Пусть на границе раздела полупроводник – диэлектрик находятся точечные заряженные центры с поверхностной плотностью Nox. В силу случайного характера их расположения в плоскости границы раздела распределение зарядов задается уравнением Пуассона. Если мы разобьем плоскость границы раздела на произвольные площадки с размером L, то на одних площадках зарядов будет больше, на других – меньше. Это эквивалентно тому, что наряду с плоскостью, заряженной равномерно, имеется дополнительный набор положительно и отрицательно заряженных площадок. Ситуация будет чем-то напоминать шахматную доску с чередующимися белыми и черными полями. Необходимо рассмотреть, как будет вести себя потенциал такой знакопеременной системы зарядов.

Будем считать за плотность заряда σ на таких площадках избыточную, по сравнению со средней, плотность заряда, обусловленную случайным распределением заряженных центров на поверхности.

Величина σ будет равна:

. (3.149)

При пуассоновском распределении точечных зарядов на плоскости величина среднеквадратичного отклонения ΔN равна

, (3.150)

где N – среднее число зарядов на площадке S с размерами L,

– средняя плотность зарядов на единицу площади.

Рассмотрим, чему равен потенциал заряженной плоскости с линейным размером L. Элементарное интегрирование даст, что потенциал U, создаваемый заряженной плоскостью на расстоянии λ вглубь полупроводника на нормали, проходящей через ее центр, будет:

. (3.151)

Величина потенциала U0 на плоскости при λ = 0 будет:

. (3.152)

Как следует из уравнений (3.151) и (3.152), величина потенциала U0 на границе раздела полупроводник – диэлектрик пропорциональна U0 ~ σL. Тогда с учетом (3.149) и (3.150) имеем для статистических флуктуаций:

. (3.153)

Из соотношения (3.153) следует, что при пуассоновском распределении заряда в плоскости границы раздела полупроводник – диэлектрик величина флуктуации потенциала на поверхности U0 не зависит от масштаба флуктуаций L, а определяется только средней плотностью заряда .

Для выявления особенностей экранировки потенциала знакопеременной системы зарядов рассмотрим модельную задачу. Пусть на границе раздела полупроводник – диэлектрик распределен заряд с плотностью σ(x, y), изменяющейся по гармоническому закону:

. (3.154)

Для нахождения потенциала, создаваемого в полупроводнике такой системой зарядов, запишем уравнение Пуассона в виде:

, (3.155)

где ρ(x, y, z) – объемная плотность заряда.

Решение уравнения Пуассона приводит к следующему значению потенциала φ(x, y, z):

, (3.156)

где L – линейный масштаб одной ячейки,

λ – расстояние от границы раздела вглубь полупроводника до точки, где рассчитывается потенциал.

Вследствие экранировки заряда, находящегося на границе раздела полупроводник – диэлектрик металлическим затвором МДП‑структуры, за счет сил зеркального отражения в затворе возникает потенциал Uотр, описываемый в полупроводнике соотношением:

.

Суммарный потенциал в полупроводнике с учетом экранировки, как показано на рисунке 3.32, будет равен:

. (3.157)

На рисунке 3.32 приведена зависимость потенциала U(x, y, z) от расстояния λ вглубь полупроводника, рассчитанная по уравнению (3.157).

Рис. 3.32. Зависимость потенциала U/U0 знакопеременной системы зарядов типа «шахматная доска» от расстояния λ вглубь полупроводника с учетом экранировки затвором МДП‑структуры

На рисунке 3.33 приведен закон спада потенциала вглубь полупроводника в зависимости от масштаба L. Как следует из этого рисунка, мелкомасштабные флуктуации на больших расстояниях экранируются эффективнее, чем крупномасштабные.

Рис. 3.33. Потенциал U/U0 системы зарядов типа «шахматная доска» в зависимости от расстояния λ вглубь полупроводника:

dox = 50Å, 1L = 100Å, 2L = 1000Å, 3L = 10000Å,

dox = 1000Å, 4L = 100Å, 5L = 1000Å, 6L = 10000Å

На рисунке 3.34 показан характер экранировки потенциала в зависимости от масштаба L при разных толщинах подзатворного диэлектрика dox и различных расстояниях λ.

Рис. 3.34. Зависимость потенциала U/U0 системы зарядов типа «шахматная доска» от размера L при различных толщинах окисла dox и расстояниях λ вглубь полупроводника

Видно, что зависимость потенциала U от масштаба L имеет выраженный максимум. Исследование соотношения (3.157) на экстремум показывает, что оптимальная величина масштаба Lопт, соответствующая максимальному значению потенциала (U/U0)max, будет равна:

. (3.158)

На рисунке 3.35 приведена зависимость масштаба Lопт, рассчитанная по соотношению (3.158) от толщины диэлектрика при разных расстояниях вглубь полупроводника.

При больших значениях толщины диэлектрика оптимальный масштаб имеет размеры порядка толщины диэлектрика Lопт ~ dox, при малых толщинах диэлектрика величина оптимального масштаба существенно больше толщины диэлектрика Lопт >> dox.

Рис. 3.35. Зависимость оптимального масштаба Lопт, соответствующему максимальному значению относительного потенциала U/U0, от толщины подзатворного диэлектрика dox

3.7.9. Сравнительный анализ зависимости среднеквадратичной флуктуации σψ и потенциала оптимальной флуктуации

Представляет определенный интерес сравнение спада потенциала U(λ), рассчитанного по соотношению (3.157) для флуктуаций различного масштаба L, со спадом величины среднеквадратичной флуктуации σψ(λ). Воспользуемся тем фактом, что для различных масштабов L величина потенциала на поверхности U0 будет одинакова, как было показано в уравнении (3.123). Будем также учитывать для каждого значения расстояния λ только оптимальные флуктуации, дающие максимальное значение потенциала, то есть флуктуации размером L = Lопт, рассчитанным по (3.158). Величину U0 выберем для всех случаев такую, чтобы для одной из толщин диэлектрика значения σψ и потенциала U совпали бы при больших значениях λ → ∞.

При других значениях толщины диэлектрика такое совпадение наблюдалось автоматически.

На рисунке 3.36 приведен график потенциала оптимальной флуктуации, рассчитанный подобным образом. Из графика видно, что при больших λ наблюдается совпадение характера зависимости среднеквадратичной флуктуации σψ и потенциала оптимальной флуктуации U от расстояния λ вглубь полупроводника.

Расхождение наблюдается при малых значениях λ, причем с уменьшением толщины диэлектрика dox область значения λ, где наблюдается это расхождение, также уменьшается. При значениях λ → 0, то есть при приближении к границе раздела полупроводник – диэлектрик, величина среднеквадратичной флуктуации σψ логарифмически расходится, в то время как потенциал оптимальной флуктуации имеет конечное значение, равное U0.

Зависимость величины потенциала флуктуации U от масштаба L приведена ранее на рисунке 3.34. При пуассоновском характере распределения точечных зарядов очевидно, что должна наблюдаться минимальная величина масштаба флуктуации, определяемая средним расстоянием между заряженными точечными центрами.

. (3.159)

Для = 1010см-2 величина Lmin будет порядка 1000Å,

для = 1012см-2 величина Lmin будет порядка 100Å.

Рис. 3.36. Зависимость потенциала оптимальной флуктуации U0 и величины среднеквадратичной флуктуации σU от расстояния λ вглубь полупроводника для системы случайно распределенных точечных зарядов на границе раздела окисел – полупроводник

Таким образом, дискретность зарядов на границе раздела полупроводник – диэлектрик является физической причиной ограничения минимального масштаба флуктуации. Физическое ограничение максимального масштаба флуктуаций определяется размерами исследуемой МДП‑структуры: LmaxLобр.

Таким образом, на границе раздела окисел – полупроводник возможны все масштабы флуктуаций заряда от Lmin до Lmax. Но в силу экранировки затвором во флуктуации потенциала дают максимальный вклад такие масштабы, которые удовлетворяют соотношению (3.158). В данном случае МДП‑структура выступает чем-то в виде RC‑фильтра, который из набора сигналов всех гармоник выделяет преимущественно одну частоту.

При переходе от области слабой к области сильной инверсии начинает играть свою роль экранирование свободными носителями. В некотором смысле это эквивалентно установке и приближению к границе второго затвора со стороны полупроводниковой подложки. Учтем этот факт экранировки следующим образом. Введем расстояние dnn из условия равенства емкостей области пространственного заряда Csc и емкости конденсатора с диэлектрической проницаемостью εs и расстоянием между обкладками dnn. Получаем:

. (3.160)

Величина dnn для области сильной инверсии будет эквивалентна среднему расстоянию свободных носителей в области пространственного заряда до границы раздела полупроводник – диэлектрик. С ростом избытка свободных носителей в инверсионном канале Γp,n величина dnn будет уменьшаться и, как следует из рисунка 3.36, будет происходить экранировка флуктуаций сначала больших масштабов. При этом будет уменьшаться и абсолютная величина флуктуаций потенциала, как видно из рисунка 3.36, и потенциальный рельеф будет становиться все мелкомасштабнее.

Максимальная длина свободного пробега дырок в инверсионных каналах кремниевых МДП-структур, рассчитанная из значения подвижности в максимуме зависимости μ(Γp) при температурах T = (77÷350)°К, составляет величину не более λ = (200÷300) Å.

Величина линейного масштаба оптимальной флуктуации, как видно из рисунка 3.35, во всех случаях обычно больше длины свободного пробега, в том числе и в МДП‑структурах со сверхтонким подзатворным диэлектриком. Этот факт позволяет рассматривать процесс переноса свободных носителей заряда в сложном потенциальном рельефе в инверсионных каналах МДП‑структур как процесс «протекания» в случайном потенциальном поле, а не как процесс рассеяния.