Влияние температуры на характеристики диодов

Как уже отмечалось, при прямом смещении ток диода инжекционный, большой по величине и представляет собой диффузионную компоненту тока основных носителей. При обратном смещении ток диода маленький по величине и представляет собой дрейфовую компоненту тока неосновных носителей (рис. 4.8). Зависимость тока от напряжения определяется соотношением: .

Для несимметричного p‑n+ перехода NA << ND концентрация неосновных носителей в p‑области существенно выше, чем в n‑области np0 >> pn0. Обратный ток в этом случае обусловлен дрейфовой электронной компонентой , поскольку .

Обратный ток диода в этом случае будет .

Вблизи комнатной температуры Тк при ее небольших отклонениях можно записать: , тогда температурная зависимость тока преобразуется к следующему виду:

. (4.16)

Величина коэффициента a для различных полупроводников будет следующей: для германия aGe = 0,09 град-1 до T = 700, для кремния aSi = 0,13 град-1 до Т = 1200.

В практических случаях используют понятие температуры удвоения обратного тока диода. Соотношение (4.16) преобразуется к следующей форме, при этом

, (4.17)

где – температура удвоения тока, величина этой температуры будет равна: T* = 10; 8; 7; 5, при значениях a = 0,07; 0,03; 0,1; 0,13.

Из соотношения (4.17) и значения температуры удвоения тока T* = 10 следует простое правило: обратный ток диода удваивается при увеличении температуры на каждые 10 ºС.

Рис. 4.8. Вольт‑амперные характеристики диода ГД107 [23, 25]:

а) при прямом смещении; б) при обратном смещении; в) температурная зависимость прямого тока диода