Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи

На рисунке 5.6а показана зонная диаграмма биполярного транзистора в схеме с общей базой в условиях равновесия. Значками (+) и (–) на этой диаграмме указаны основные и неосновные носители.

Для биполярного транзистора в схеме с общей базой активный режим (на эмиттерном переходе – прямое напряжение, на коллекторном – обратное) является основным. Поэтому в дальнейшем будет рассматриваться транзистор в активном режиме, для p‑n‑р биполярного транзистора Uэ > 0, Uк < 0.

Для биполярного транзистора p‑n‑р типа в активном режиме эмиттерный переход смещен в прямом направлении, и через него происходит инжекция дырок, как неосновных носителей, в базу. База должна иметь достаточно малую толщину W (W << Lp, где Lp – диффузионная длина неосновных носителей), чтобы инжектированные в базу неосновные носители не успевали прорекомбинировать за время переноса через базу. Коллекторный переход, нормально смещенный в обратном направлении, "собирает" инжектированные носители, прошедшие через слой базы.

Рассмотрим компоненты токов в эмиттерном и коллекторном переходах (рис. 5.7). Для любого p‑n перехода ток J определяется суммой электронного Jn и дырочного Jp компонент, а они в свою очередь имеют дрейфовую и диффузионную составляющие:

.

При приложении к эмиттерному переходу прямого напряжения Uэ > 0 в биполярном транзисторе p‑n‑р происходит инжекция дырок из эмиттера в базу Iэр и электронов из базы в эмиттер Iэn. Ввиду того, что эмиттер легирован намного сильнее базы, ток инжектированных дырок Iэр будет значительно превышать ток электронов Iэn. Инжектированные в базу дырки в результате диффузии будут перемещаться в коллекторному переходу, и если ширина базы W много меньше диффузионной длины Lp, почти все дырки дойдут до коллектора и электрическим полем коллекторного p‑n‑р перехода будут переброшены в р‑область коллектора. Возникающий вследствие этого коллекторный ток лишь немного меньше тока дырок, инжектированных эмиттером.

Вольт-амперные характеристики БТ в активном режиме (Uк < 0, |Uк| >> 0):

,

где Iэ – ток в цепи эмиттера, Iк – ток в цепи коллектора, Iб – ток на базовом выводе.

В активном режиме к эмиттеру приложено прямое напряжение и через переход течет эмиттерный ток Iэ, имеющий две компоненты:

,

где Iэр – ток инжекции дырок из эмиттера в базу, Iэn – ток инжектированных электронов из базы в эмиттер. Величина «полезной» дырочной компоненты равняется Iэp = γ·Iэ, где γ – эффективность эмиттера. Величина дырочного эмиттерного тока, без рекомбинации дошедшая до коллектора, равняется γκIэ.

Ток базы Iб транзистора будет состоять из трех компонент, включающих электронный ток в эмиттерном переходе Iэn = (1 – γIэ, рекомбинационный ток в базе (1 - κ)γIэ и тепловой ток коллектора Iк0.

Тепловой ток коллектора Iк0 имеет две составляющие:

,

где I0 – тепловой ток, Ig – ток генерации.

На рисунке 5.7 приведена схема биполярного транзистора в активном режиме, иллюстрирующая компоненты тока в схеме с общей базой.

Рис. 5.7. Схема, иллюстрирующая компоненты тока в биполярном транзисторе в схеме с общей базой

5.3. Формулы Молла – Эберса

Формулы Молла – Эберса являются универсальными соотношениями, которые описывают характеристики биполярных транзисторов во всех режимах работы [28, 5, 19].

Для такого рассмотрения представим БТ в виде эквивалентной схемы, приведенной на рисунке 5.8.

Рис. 5.8. Эквивалентная схема биполярных транзисторов во всех режимах работы

При нормальном включении через эмиттерный p‑n переход течет ток I1, через коллекторный переход течет ток αNI1 – меньший, чем I1, вследствие рекомбинации части инжектированных носителей в базе. На рисунке 5.8 этот процесс изображен как генератор тока αNI1, где αN – коэффициент передачи эмиттерного тока. При инверсном включении транзистора прямому коллекторному току I2 будет соответствовать эмиттерный ток αII2, где αI – коэффициент инверсии. Таким образом, токи эмиттера Jэ и коллектора Jк в общем случае состоят из инжектируемого (I1 или I2) и экстрагируемого (αNI1 или αII2) токов:

(5.1)

Величины токов I1 и I2 выражаются для p‑n переходов стандартным способом:

(5.2)

где Iэ0' и Iк0' – тепловые (обратные) токи p‑n переходов. Отметим, что токи Iэ0' и Iк0' отличаются от обратных токов эмиттера Iэ0 и коллектора биполярного транзистора.

Оборвем цепь эмиттера (Jэ = 0) и подадим на коллекторный переход большое запирающее напряжение Uк. Ток, протекающий в цепи коллектора при этих условиях, будем называть тепловым током коллектора Iк0. Поскольку Iэ = 0, из (5.1) следует, что I1 = αII2, а из (5.2) I2 = - Iк', поскольку U >> kT/q.

Полагая Iк = Iк0, получаем в этом случае:

,

. (5.3)

Обозначим ток эмиттера при большом отрицательном смещении и разомкнутой цепи коллектора через Iэ0' – тепловой ток эмиттера:

. (5.4)

Величины теплового эмиттерного и коллекторного токов значительно меньше, чем соответствующие тепловые токи диодов.

Подставляя (5.2) в (5.1), получаем:

,

, (5.5)

,

где Jб – ток базы, равный разности токов эмиттера Iэ и коллектора Iк.

Формулы (5.5) получили название формул Молла – Эберса и полезны для анализа статических характеристик биполярного транзистора при любых сочетаниях знаков токов и напряжений.

При измерении теплового тока коллектора Iк0 дырки как неосновные носители уходят из базы в коллектор: Jк = Jб (Jэ = 0). При этом поток дырок из базы в эмиттер не уравновешен и их переходит из эмиттера в базу больше, чем в равновесных условиях. Это вызовет накопление избыточного положительного заряда в базе и увеличение потенциального барьера на переходе эмиттер – база, что, в конце концов, скомпенсирует дырочные токи.

Таким образом, необходимо отметить, что при изменении теплового тока коллектора эмиттер будет заряжаться отрицательно по отношению к базе.

5.4. Вольт‑амперные характеристики биполярного транзистора в активном режиме

Рассмотрим случай, когда на эмиттерный переход биполярного транзистора подано прямое, а на коллекторный – обратное смещение. Для p‑n‑p биполярного транзистора это Uэ > 0, Uк < 0.

Для нахождения ВАХ в качестве входных параметров выбирают Jэ, Uк, а выходных – Jк, Uэ из соображений удобства измерения. Выразим в (5.5) , подставим в выражение для Jк и получим:

.

Следовательно,

. (5.6)

Соотношение (5.6) описывает семейство коллекторных характеристик Iк = f(Uк) с параметром Iэ.

Семейство эмиттерных характеристик Uэ = f(Iэ) с параметром Uк получим из (5.5). Учитывая, что , получаем:

;

. (5.7)

Формулы (5.6) и (5.7) описывают характеристики транзистора, представленные на рисунке 5.9.

Рис. 5.9. Вольт-амперные характеристики БТ в активном режиме: семейство коллекторных кривых

Для активного режима, когда Uэ > 0, Uк < 0, |Uк| << 0, выражения (5.6) и (5.7) переходят в выражения:

. (5.8)