Приборы с зарядовой связью

Новым типом полевых полупроводниковых приборов, работающих в динамическом режиме, являются приборы с зарядовой связью (ПЗС). На рисунке 6.19 приведена схема, поясняющая устройство и основные физические принципы работы ПЗС. Приборы с зарядовой связью представляют собой линейку или матрицу последовательно расположенных МДП‑структур. Величина зазора между соседними МДП‑структурами невелика и составляет 1‑2 мкм. ПЗС‑элементы служат для преобразования оптического излучения в электрические сигналы и передачи информации от одного элемента электронной схемы к другому.

Рис. 6.19. Устройство и принцип работы приборов с зарядовой связью

Рассмотрим принцип работы ПЗС. При подаче обедняющего импульса напряжения VG1 на затвор 1‑го элемента в ОПЗ полупроводника образуется неравновесный слой обеднения. Для электронов в полупроводнике р‑типа это соответствует формированию под затвором 1‑го элемента потенциальной ямы. Известно, что неравновесное состояние сохраняется в период времени t порядка времени генерационно-рекомбинационных процессов τген. Поэтому все остальные процессы в ПЗС‑элементах должны проходить за времена меньше τген. Пусть в момент времени t1 >> τген в ОПЗ под затвор 1‑го элемента инжектирован каким-либо образом информационный заряд электронов (рис. 6.19б). Теперь в момент времени t2 > t1, но t2 << τген на затвор 2‑го ПЗС‑элемента подадим напряжение VG2 > VG1, способствующее формированию более глубокой потенциальной ямы для электронов под затвором 2‑го элемента. Вследствие диффузии и дрейфа возникнет поток электронов из ОПЗ под 1‑м элементом в ОПЗ под вторым элементом, как показано на рисунке 6.19в. Когда весь информационный заряд перетечет в ОПЗ 2‑го ПЗС‑элемента, напряжение на затворе VG1 снимается, а на затворе VG2 уменьшается до значения, равного VG1 (см. рис. 6.19г). Произошла nepeдача информационного заряда. Затем цикл повторяется и заряд передается дальше в ОПЗ 3-го ПЗС‑элемента. Для того, чтобы приборы с зарядовой связью эффективно функционировали, необходимо, чтобы время передачи tпер от одного элемента к другому было много меньше времени генерационно-рекомбинационных процессов (tпер << τген). Не должно быть потерь информационного заряда в ОПЗ вследствие захвата на поверхностные состояния, в связи с чем требуются МДП‑структуры с низкой плотностью поверхностных состояний (Nss ≈ 1010 см-2·эВ-1) [21, 13, 11, 26].

6.16. Полевой транзистор с затвором в виде р‑n перехода

Рассмотрим характеристики полевого транзистора, затвор у которого выполнен в виде р‑n перехода. На рисунке 6.20 показана одна из возможных топологий такого транзистора. Омические контакты к левой и правой граням полупроводниковой подложки будут являться истоком и стоком, область квазинейтрального объема, заключенная между обедненными областями р‑n переходов – каналом, а сильно легированные n+ области сверху и снизу – затвором полевого транзистора. Конструктивно ПТ с затвором в виде р‑n перехода может быть выполнен с использованием планарной технологии и в различных других вариантах.

При приложении напряжения VGS к затвору ПТ, обеспечивающего обратное смещение р‑n перехода (VGS > 0), происходит расширение обедненной области р‑n перехода в полупроводниковую подложку, поскольку затвор легирован существенно сильнее, чем подложка (ND >> NA). При этом уменьшается поперечное сечение канала, а следовательно, увеличивается его сопротивление. Приложенное напряжение исток‑сток VDS вызовет ток в цепи канала полевого транзистора. Знак напряжения VDS необходимо выбирать таким образом, чтобы оно также вызывало обратное смещение затворного р‑n перехода, то есть было бы противоположно по знаку напряжению VGS. Таким образом, полевой транзистор с затвором в виде р‑n перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Рис. 6.20. Схематическое изображение полевого транзистора с затвором в виде р‑n перехода

Получим вольт‑амперную характеристику транзистора. Здесь, как и ранее, ось у направим вдоль канала, ось х – по ширине канала, ось z – по глубине канала. Обозначим длину, ширину и высоту канала при отсутствии напряжения на транзисторе как L, W, Н (VGS = VDS = 0).

При приложении напряжения к затвору VGS > 0 и стоку VDS < 0 произойдет расширение обедненной области р‑n перехода на величину Δlоб, равную:

. (6.88)

Поскольку напряжение исток‑сток VDS распределено вдоль канала VDS(у), то изменение ширины канала транзистора будет различно по длине канала. При этом высота канала h(y) будет равна:

. (6.89)

Введем напряжение смыкания VG0 – напряжение на затворе, когда в квазиравновесных условиях (VDS = 0) обедненные области р‑n переходов смыкаются: h(y) = 0.

Тогда из (6.89) следует, что

. (6.90)

Соотношение (6.89) с учетом (6.90) можно переписать в виде:

. (6.91)

Выделим на длине канала участок от у до у+dy, сопротивление которого будет dR(y). При токе канала IDS на элементе dy будет падение напряжения dVDS(y), равное:

. (6.92)

Величина сопротивления dR(y) будет равна:

. (6.93)

Подставим (6.92) в (6.93) и проведем интегрирование по длине канала:

. (6.94)

Поскольку удельное объемное сопротивление ρ равно , преобразуем величину :

. (6.95)

Здесь – заряд свободных дырок в канале на единицу площади.

Подставляя (6.95) в (6.94) и проведя интегрирование, получаем следующую зависимость тока стока IDS от напряжения на затворе VG и стоке VDS для полевого транзистора с затвором в виде р-n перехода:

. (6.96)

При малых значениях напряжения исток‑сток в области плавного канала VDS << VG ток IDS равен:

. (6.97)

Если сравнить соотношение (6.97) с выражением (6.10) для тока стока МДП полевого транзистора в области плавного канала, то видно, что эти выражения совпадают при малых значениях напряжения VDS.

Из (6.91) следует, что при напряжениях VG < VG0 всегда можно найти такое напряжение на стоке VDS , когда вблизи стока произойдет смыкание канала: h(y = L, VG, VDS) = 0.

Аналогично процессам в МДП ПТ это явление называется отсечкой. Из (6.91) следует, что напряжение отсечки VDS* будет равно:

. (6.98)

Также заметим, что выражение (6.98) аналогично соотношению (6.11) для напряжения отсечки МОП ПТ, а напряжение смыкания VG0 имеет аналогом величину порогового напряжения VТ.

По мере роста напряжения исток‑сток VDS точка отсечки перемещается от истока к стоку. При этом аналогично МДП ПТ наблюдаются независимость тока стока от напряжения на стоке и эффект модуляции длины канала. Подставляя (6.98) в (6.96), получаем зависимость тока стока IDS в области отсечки для полевого транзистора с затвором в виде р‑n перехода:

. (6.99)

В области отсечки выражение (6.99) хорошо аппроксимируется квадратичной зависимостью вида:

. (6.100)

На рисунке 6.21а, б показаны вольт-амперные характеристики в ПТ с затвором в виде р‑n перехода. Их отличительной особенностью является то, что при напряжении на затворе VG = 0 канал транзистора открыт и величина тока через него максимальна.

Рис. 6.21. Характеристики транзистора КП302Б:

а) выходные характеристики; б) начальные участки выходных характеристик

Быстродействие ПТ с затвором в виде р‑n переходов обусловлено зарядкой барьерных емкостей СG затворных р‑n переходов через сопротивление канала RK. Величина времени заряда . Емкость затвора СG и сопротивление канала RK равны:

; (6.101)

. (6.102)

Выражение (6.102) имеет минимальное значение при ширине обедненной области , при этом граничная частота

. (6.103)

При значениях H = L для кремния (εs = 11,8) с удельным сопротивлением ρ, равным ρ = 1 Ом·см, граничная частота будет составлять величину несколько гигагерц.

6.17. Микроминиатюризация МДП‑приборов

Полевые приборы со структурой металл – диэлектрик – полупроводник в силу универсальности характеристик нашли широкое применение в интегральных схемах (ИС). Одна из основных задач микроэлектроники заключается в повышении степени интеграции и быстродействия интегральных схем. Для ИС на МДП‑приборах благодаря чрезвычайно гибкой технологии их изготовления эта задача решается несколькими путями. В основе одного из подходов лежит принцип двойной диффузии. Эта технология получила название Д‑МОП технологии, когда структура имеет планарный характер, и V‑МОП технологии, когда структура транзистора имеет вертикальный характер. Другой подход связан с пропорциональной микроминиатюризацией обычного планарного МДП‑транзистора и получил название высококачественной, или N‑МОП, технологии.

Таблица 3. Эволюция размеров и параметров МДП‑приборов

Параметры прибора (схемы) n-МОП с обогащенной нагрузкой, 1972 МОП, 1980 Коэффициент изменения
Длина канала L, мкм 1-0,6 0,13 N -1
Поперечная диффузия LD, мкм 1,4 0,4     N -1
Глубина p-n переходов xB, мкм 2,0 0,8   0,07-0,13 N -1
Толщина затворного окисла dox, нм N -1
Напряжение питания Vпит, В 4-15 2-4     N -1
Минимальная задержка вентиля , нс 12-15 0,5     N -1
Мощность на вентиль Р, мВт 1,5 0,4     N -2
Количество транзисторов в процессоре Intel 2,5 тыс 80 тыс 1,2 млн 42 млн N -2

 

Согласно основным положениям модели пропорциональной микроминиатюризации при уменьшении длины канала в N раз для сохранения тех же характеристик транзистора другие его параметры (толщина окисла, ширина канала, напряжение питания) необходимо уменьшить в N раз, а концентрацию легирующей примеси в подложке увеличить в N раз. Действительно, при таком изменении, как следует из (6.8), величина порогового напряжения VT и величина проводимости канала практически не изменяются. Быстродействие, определяемое временем пролета носителей через канал, согласно (6.31) возрастет в N раз, ток канала уменьшится в N раз, рассеиваемая мощность уменьшится в N2 раз. В таблице 3 приведена динамика изменения основных параметров МДП‑приборов, проявляющаяся при пропорциональной микроминиатюризации.

Идеи и принципы пропорциональной микроминиатюризации позволяют использовать масштабирование МДП‑транзисторов при разработке интегральных схем на их основе. Такой подход позволил фирме Intel модернизировать процессоры персональных компьютеров каждые три-четыре года. В таблице 4 приведены этапы пропорциональной микроминиатюризации процессоров Intel за последние тридцать лет.

Таблица 4. Микроминиатюризация процессоров Intel

Модель Год выпуска Транзисторы Тех. процесс Тактовая частота
2 250 10 мкм 108 КГц
2 500 10 мкм 200 КГц
5 000 6 мкм 2 МГц
29 000 3 мкм 5-10 МГц
120 000 1,5 мкм 6-12,5 МГц
275 000 1,5-1 мкм 16-33 МГц
486DX 1 180 000 1-0,6 мкм 25-100 МГц
Pentium 3 100 000 0,8-0,35 мкм 60-200 МГц
Pentium II 7 500 000 0,35-0,25 мкм 233-450 МГц
Pentium III 24 000 000 0,25-0,13 мкм 450-1300 МГц
Pentium 4 42 000 000 0,18-0,13 мкм >1400 МГц

 

На рисунке 6.22 показана в полулогарифмическом масштабе эволюция размеров МДП‑транзистора и длины его канала. Обращает внимание на себя тот факт, что принципы пропорциональной микроминиатюризации позволили вплотную придвинуться к размерам базового элемента интегральных схем, ниже которых находится предел, обусловленный физическими ограничениями [31].

Опыт разработки МДП‑транзисторов с длинами канала 0,25-0,1 мкм показывает, что в таких приборах резко нарастает количество новых физических явлений, в том числе и квантовых. Принцип пропорциональной микроминиатюризации при этих значениях линейных размеров уже перестает работать.

Рис. 6.22. Уменьшение размеров транзистора